3D Bite Modeling and Feeding Mechanics of the Largest Living Amphibian, the Chinese Giant Salamander Andrias davidianus (Amphibia:Urodela)

Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and their “conservative” morphology, cryptobranchids may be useful models to reconstruct the feeding ecology and biomechanics of different members of early tetrapods and amphibians, with similar osteological and myological constraints.

[1]  S. Wroe,et al.  Three-dimensional computer analysis of white shark jaw mechanics: how hard can a great white bite? , 2008 .

[2]  D. Bramble,et al.  Functional vertebrate morphology , 1985 .

[3]  W C H Parr,et al.  Toward integration of geometric morphometrics and computational biomechanics: new methods for 3D virtual reconstruction and quantitative analysis of Finite Element Models. , 2012, Journal of theoretical biology.

[4]  H. Shaffer,et al.  Functional design of the feeding mechanism in lower vertebrates: unidirectional and bidirectional flow systems in the tiger salamander , 1986 .

[5]  W. Kathe Morphology and function of the sutures in the dermal skull roof of Discosauriscus austriacus Makowsky; 1876 (Seymouriamorpha; Lower Permian of Moravia) and Onchiodon labyrinthicus Geinitz; 1861 (Temnospondyli; Lower Permian of Germany) , 1995 .

[6]  Joseph Hyrtl Cryptobranchus japonicus : schediasma anatomicum, quod almae et antequissimae Universitati Vidonbonensi, ad solennia saecularia quinta, pie celdebranda / dicat, dedicat, Josephus Hyrtl. , 1865 .

[7]  N. Shubin,et al.  Earliest known crown-group salamanders , 2003, Nature.

[8]  S. Herring,et al.  Craniofacial sutures: Morphology, growth, and in vivo masticatory strains , 1999, Journal of morphology.

[9]  T. H. Eaton The myology of salamanders with particular reference to Dicamptodon ensatus (Eschscholtz). I. Muscles of the head , 1936 .

[10]  L. Trueb,et al.  Biology of Amphibians , 1986 .

[11]  K. Schwenk CHAPTER 2 – An Introduction to Tetrapod Feeding , 2000 .

[12]  F. Witzmann,et al.  Reconstruction of cranial and hyobranchial muscles in the triassic temnospondyl Gerrothorax provides evidence for akinetic suction feeding , 2013, Journal of morphology.

[13]  J. M. Garcı́a,et al.  Modelling bone tissue fracture and healing: a review ☆ , 2004 .

[14]  C. Marshall,et al.  Terrestrial-style feeding in a very early aquatic tetrapod is supported by evidence from experimental analysis of suture morphology , 2007, Proceedings of the National Academy of Sciences.

[15]  J. H. Larsen,et al.  The feeding system of terrestrial tiger salamanders (Ambystoma tigrinum melanostictum baird) , 1975, Journal of morphology.

[16]  W. Kathe Comparative morphology and functional interpretation of the sutures in the dermal skull roof of temnospondyl amphibians , 1999 .

[17]  G. E. Mase,et al.  Continuum Mechanics for Engineers , 1991 .

[18]  J. Currey The evolution of the mechanical properties of amniote bone. , 1987, Journal of biomechanics.

[19]  V. Bels,et al.  Vertebrate Biomechanics and Evolution , 2002 .

[20]  Jennifer R. Lorenz Elwood,et al.  Morphology and behavior of the feeding apparatus in Cryptobranchus alleganiensis (Amphibia: Caudata) , 1994, Journal of morphology.

[21]  R. Reisz,et al.  A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders , 2008, Nature.

[22]  Kurt Schwenk,et al.  Feeding : form, function, and evolution in tetrapod vertebrates , 2000 .

[23]  D. Wake,et al.  CHAPTER 3 – Aquatic Feeding in Salamanders , 2000 .

[24]  Jen A. Bright,et al.  A review of paleontological finite element models and their validity , 2014 .

[25]  L. Witmer 2 The Extant Phylogenetic Bracket and the importance of reconstructing soft tissues in fossils , 2007 .

[26]  A. Lappin,et al.  Insights into the Ecology and Evolutionary Success of Crocodilians Revealed through Bite-Force and Tooth-Pressure Experimentation , 2012, PloS one.

[27]  David S Strait,et al.  Modeling elastic properties in finite-element analysis: how much precision is needed to produce an accurate model? , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[28]  A. Weissenbacher,et al.  The Oropharyngeal Morphology in the Semiaquatic Giant Asian Pond Turtle, Heosemys grandis, and Its Evolutionary Implications , 2012, PloS one.

[29]  À. Galobart,et al.  Temnospondyli bite club: ecomorphological patterns of the most diverse group of early tetrapods , 2011, Journal of evolutionary biology.

[30]  D. Wake,et al.  Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. , 2009, Molecular phylogenetics and evolution.

[31]  R. M. Alexander,et al.  Exploring Biomechanics: Animals in Motion , 1992 .

[32]  I. Grosse,et al.  Requirements for comparing the performance of finite element models of biological structures. , 2009, Journal of theoretical biology.

[33]  P. Aerts,et al.  Biomechanical Studies of Food and Diet Selection , 2012 .

[34]  P O'Higgins,et al.  Comparison between in vivo and theoretical bite performance: using multi-body modelling to predict muscle and bite forces in a reptile skull. , 2010, Journal of biomechanics.

[35]  Phillip D. Clausen,et al.  Beware the black box: investigating the sensitivity of FEA simulations to modelling factors in comparative biomechanics , 2013, PeerJ.

[36]  D. Cundall,et al.  Asymmetric suction feeding in primitive salamanders , 1987, Experientia.

[37]  R. Carroll,et al.  The skull and jaw musculature as guides to the ancestry of salamanders , 1980 .

[38]  M. Coates,et al.  Dates, nodes and character conflict: Addressing the Lissamphibian origin problem , 2007 .

[39]  P. Aerts,et al.  Masters of change: seasonal plasticity in the prey-capture behavior of the Alpine newt Ichthyosaura alpestris (Salamandridae) , 2013, Journal of Experimental Biology.

[40]  E. Rayfield Finite Element Analysis and Understanding the Biomechanics and Evolution of Living and Fossil Organisms , 2007 .

[41]  Lance D. McBrayer,et al.  Bite force in vertebrates: opportunities and caveats for use of a nonpareil whole-animal performance measure , 2008 .

[42]  Josep Fortuny Terricabras,et al.  Quasi-homothetic transformation for comparing the mechanical performance of planar models in biological research , 2013 .

[43]  S. Van Wassenbergh,et al.  Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism , 2013, Journal of The Royal Society Interface.

[44]  T. Martin,et al.  Cranial anatomy of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan , 2011 .

[45]  J. Thomason,et al.  Functional Morphology in Vertebrate Paleontology , 1998 .

[46]  B. T. Miller,et al.  Comparative kinematics of terrestrial prey capture in Salamanders and newts (Amphibia:Urodela:Salamandridae) , 1990 .

[47]  J. Bright FIFTH INTERNATIONAL CONGRESS OF VERTEBRATE MORPHOLOGY , 1996 .

[48]  A. Savitzky FEEDING: FORM, FUNCTION, AND EVOLUTION IN TETRAPOD VERTEBRATES , 2002, Copeia.

[49]  Colin Palmer,et al.  Models in palaeontological functional analysis , 2012, Biology Letters.

[50]  S. Hoskins,et al.  The Rise of Amphibians: 365 Million Years of Evolution , 2011 .

[51]  H. Shaffer,et al.  Functional morphology of the feeding mechanism in aquatic ambystomatid salamanders , 1985, Journal of morphology.

[52]  R. Bonett,et al.  Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. , 2005, Systematic biology.

[53]  Peter Delves,et al.  Encyclopedia of life sciences , 2009 .

[54]  Mason B. Meers Maximum Bite Force and Prey Size of Tyrannosaurus rex and Their Relationships to the Inference of Feeding Behavior , 2002 .

[55]  D. Wake,et al.  CHAPTER 4 – Terrestrial Feeding in Salamanders , 2000 .

[56]  S. Wroe,et al.  Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa , 2005, Proceedings of the Royal Society B: Biological Sciences.

[57]  À. Galobart,et al.  Skull Mechanics and the Evolutionary Patterns of the Otic Notch Closure in Capitosaurs (Amphibia: Temnospondyli) , 2012, Anatomical record.

[58]  R. Schoch Amphibian skull evolution: the developmental and functional context of simplification, bone loss and heterotopy. , 2014, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[59]  W. Parr,et al.  Virtual Reconstruction and Prey Size Preference in the Mid Cenozoic Thylacinid, Nimbacinus dicksoni (Thylacinidae, Marsupialia) , 2014, PloS one.