Hierarchical sparse observation models and informative prior for Bayesian inference of spatially varying parameters
暂无分享,去创建一个
Shuai Lu | Wonjung Lee | Yiqun Sun | Shuai Lu | Wonjung Lee | Yiqun Sun
[1] A. Stordal,et al. Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter , 2011 .
[2] Nicholas Zabaras,et al. Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .
[3] P. Kitanidis. Parameter Uncertainty in Estimation of Spatial Functions: Bayesian Analysis , 1986 .
[4] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[5] W. Strauss,et al. Partial Differential Equations: An Introduction , 1992 .
[6] Kevin P. Murphy,et al. Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.
[7] M. Röckner,et al. A Concise Course on Stochastic Partial Differential Equations , 2007 .
[8] R. E. Kalman,et al. A New Approach to Linear Filtering and Prediction Problems , 2002 .
[9] Eugenia Kalnay,et al. Atmospheric Modeling, Data Assimilation and Predictability , 2002 .
[10] Andrew J Majda,et al. Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems , 2007, Proceedings of the National Academy of Sciences.
[11] Gardar Johannesson,et al. Stochastic Engine Final Report: Applying Markov Chain Monte Carlo Methods with Importance Sampling to Large-Scale Data-Driven Simulation , 2004 .
[12] Jun S. Liu,et al. Mixture Kalman filters , 2000 .
[13] Andrew J. Majda,et al. Test Models for Filtering with Superparameterization , 2013, Multiscale Model. Simul..
[14] Andrew J. Majda,et al. Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows , 2006 .
[15] B. Anderson,et al. Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[16] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[17] P. Bickel,et al. Sharp failure rates for the bootstrap particle filter in high dimensions , 2008, 0805.3287.
[18] J. Zabczyk,et al. Stochastic Equations in Infinite Dimensions , 2008 .
[19] I. Weir. Fully Bayesian Reconstructions from Single-Photon Emission Computed Tomography Data , 1997 .
[20] Andrew J. Majda,et al. Filtering skill for turbulent signals for a suite of nonlinear and linear extended Kalman filters , 2012, J. Comput. Phys..
[21] Mike West,et al. Markov Random Field Models for High-Dimensional Parameters in Simulations of Fluid Flow in Porous Media , 2002, Technometrics.
[22] D. M. Schmidt,et al. Bayesian inference applied to the electromagnetic inverse problem , 1998, Human brain mapping.
[23] P. Bickel,et al. Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems , 2008, 0805.3034.
[24] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[25] Ning Liu,et al. Inverse Theory for Petroleum Reservoir Characterization and History Matching , 2008 .
[26] Andrew J. Majda,et al. Test models for improving filtering with model errors through stochastic parameter estimation , 2010, J. Comput. Phys..
[27] Andrew J. Majda,et al. Filtering Complex Turbulent Systems , 2012 .
[28] Andrew J. Majda,et al. Dynamic Stochastic Superresolution of sparsely observed turbulent systems , 2013, J. Comput. Phys..
[29] Arthur Gelb,et al. Applied Optimal Estimation , 1974 .
[30] G. Evensen. Data Assimilation: The Ensemble Kalman Filter , 2006 .
[31] Ronald P. Barry,et al. Blackbox Kriging: Spatial Prediction Without Specifying Variogram Models , 1996 .
[32] Nasser M. Nasrabadi,et al. Pattern Recognition and Machine Learning , 2006, Technometrics.
[33] Peijun Li,et al. An inverse random source scattering problem in inhomogeneous media , 2011 .
[34] Michael Goldstein,et al. Bayesian Forecasting for Complex Systems Using Computer Simulators , 2001 .
[35] Nicholas Zabaras,et al. A Bayesian approach to multiscale inverse problems using the sequential Monte Carlo method , 2011 .
[36] Phaedon-Stelios Koutsourelakis,et al. A multi-resolution, non-parametric, Bayesian framework for identification of spatially-varying model parameters , 2008, J. Comput. Phys..
[37] James O. Berger,et al. A Bayesian analysis of the thermal challenge problem , 2008 .
[38] A. Bennett. Inverse Methods in Physical Oceanography , 1992 .
[39] Andrew J. Majda,et al. A statistically accurate modified quasilinear Gaussian closure for uncertainty quantification in turbulent dynamical systems , 2013 .
[40] Andrew J. Majda,et al. Filtering nonlinear dynamical systems with linear stochastic models , 2008 .
[41] Andrew J. Majda,et al. New Methods for Estimating Ocean Eddy Heat Transport Using Satellite Altimetry , 2012 .
[42] H. Kushner. Approximations to optimal nonlinear filters , 1967, IEEE Transactions on Automatic Control.
[43] Andrew J. Majda,et al. Mathematical test criteria for filtering complex systems: Plentiful observations , 2008, J. Comput. Phys..
[44] P. Bickel,et al. Obstacles to High-Dimensional Particle Filtering , 2008 .
[45] Henning Omre,et al. Uncertainty in Production Forecasts based on Well Observations, Seismic Data and Production History , 2001 .
[46] Andrew J. Majda,et al. Mathematical strategies for filtering turbulent dynamical systems , 2010 .
[47] Andrew J. Majda,et al. A NONLINEAR TEST MODEL FOR FILTERING SLOW-FAST SYSTEMS ∗ , 2008 .