Robust Schatten-p Norm Based Approach for Tensor Completion

The matrix nuclear norm has been widely applied to approximate the matrix rank for low-rank tensor completion because of its convexity. However, this relaxation may make the solution seriously deviate from the original solution for real-world data recovery. In this paper, using a nonconvex approximation of rank, i.e., the Schatten-p norm, we propose a novel model for tensor completion. It’s hard to solve this model directly because the objective function of the model is nonconvex. To solve the model, we develop a variant of this model via the classical quadric penalty method, and propose an algorithm, i.e., SpBCD, based on the block coordinate descent method. Although the objective function of the variant is nonconvex, we show that the sequence generated by SpBCD is convergent to a critical point. Our numerical experiments on real-world data show that SpBCD delivers state-of-art performance in recovering missing data.

[1]  Bart Vandereycken,et al.  Low-rank tensor completion by Riemannian optimization , 2014 .

[2]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[3]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[4]  Nikos Komodakis,et al.  Image Completion Using Global Optimization , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[5]  V. Koltchinskii Von Neumann Entropy Penalization and Low Rank Matrix Estimation , 2010, 1009.2439.

[6]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[7]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[8]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[9]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[10]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[11]  Zongben Xu,et al.  $L_{1/2}$ Regularization: A Thresholding Representation Theory and a Fast Solver , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[12]  K. Kurdyka On gradients of functions definable in o-minimal structures , 1998 .

[13]  Christopher Rasmussen,et al.  Spatiotemporal Inpainting for Recovering Texture Maps of Occluded Building Facades , 2007, IEEE Transactions on Image Processing.

[14]  Baoxin Li,et al.  Tensor completion for on-board compression of hyperspectral images , 2010, 2010 IEEE International Conference on Image Processing.

[15]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[16]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[17]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[18]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[19]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2013, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Yin Zhang,et al.  An alternating direction algorithm for matrix completion with nonnegative factors , 2011, Frontiers of Mathematics in China.

[21]  Qibin Fan,et al.  A Mixture of Nuclear Norm and Matrix Factorization for Tensor Completion , 2017, J. Sci. Comput..

[22]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[23]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[24]  Wotao Yin,et al.  Parallel matrix factorization for low-rank tensor completion , 2013, ArXiv.

[25]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[26]  Guillermo Sapiro,et al.  Dictionary Learning for Noisy and Incomplete Hyperspectral Images , 2012, SIAM J. Imaging Sci..

[27]  Guillermo Sapiro,et al.  Video Inpainting Under Constrained Camera Motion , 2007, IEEE Transactions on Image Processing.

[28]  T. Tony Cai,et al.  Matrix completion via max-norm constrained optimization , 2013, ArXiv.

[29]  Akbar Asgharzadeh,et al.  Uniform-Geometric distribution , 2016 .

[30]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[31]  Xiaoming Yuan,et al.  Matrix completion via an alternating direction method , 2012 .

[32]  M. Sabarimalai Manikandan,et al.  Adaptive MRI image denoising using total-variation and local noise estimation , 2012, IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM -2012).

[33]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[34]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[35]  Feiping Nie,et al.  Robust Matrix Completion via Joint Schatten p-Norm and lp-Norm Minimization , 2012, 2012 IEEE 12th International Conference on Data Mining.

[36]  Ya-Xiang Yuan,et al.  Optimization Theory and Methods: Nonlinear Programming , 2010 .

[37]  Pietro Belotti,et al.  Rounding-based heuristics for nonconvex MINLPs , 2011, Mathematical Programming Computation.

[38]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[39]  Yuanyuan Liu,et al.  An Efficient Matrix Factorization Method for Tensor Completion , 2013, IEEE Signal Processing Letters.