Type-2 fuzzy granular approach for intelligent control: The case of three tank water control

In this paper we show simulation results of a new type-2 fuzzy granular approach for intelligent control of nonlinear dynamical plants. First, we describe the proposed approach for intelligent control using a hierarchical modular architecture with type-2 fuzzy logic used for combining the outputs of the modules. Then, the approach is illustrated with the benchmark case of three tank water level control.

[1]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[2]  Jerry M. Mendel,et al.  Examining the continuity of type-1 and interval type-2 fuzzy logic systems , 2010, International Conference on Fuzzy Systems.

[3]  Patricia Melin,et al.  Hierarchical genetic algorithms for optimal type-2 fuzzy system design , 2011, 2011 Annual Meeting of the North American Fuzzy Information Processing Society.

[4]  M. MendelJ. Type-2 Fuzzy Sets and Systems , 2007 .

[5]  J. Stoustrup,et al.  Passive fault tolerant control of a double inverted pendulum—a case study , 2003 .

[6]  Oscar Castillo,et al.  Building Fuzzy Inference Systems with a New Interval Type-2 Fuzzy Logic Toolbox , 2007, Trans. Comput. Sci..

[7]  Jerry M. Mendel,et al.  On the Continuity of Type-1 and Interval Type-2 Fuzzy Logic Systems , 2011, IEEE Transactions on Fuzzy Systems.

[8]  Witold Pedrycz,et al.  Type-2 Fuzzy Logic: Theory and Applications , 2007, 2007 IEEE International Conference on Granular Computing (GRC 2007).

[9]  Oscar Castillo,et al.  An Efficient Computational Method to Implement Type-2 Fuzzy Logic in Control Applications , 2007, Analysis and Design of Intelligent Systems using Soft Computing Techniques.

[10]  Oscar Castillo,et al.  Universal Approximation of a Class of Interval Type-2 Fuzzy Neural Networks Illustrated with the Case of Non-linear Identification , 2009, IFSA/EUSFLAT Conf..

[11]  Lingen Chen,et al.  Matlab/Simulink-based simulation for digital-control system of marine three-shaft gas-turbine , 2005 .

[12]  Vladik Kreinovich,et al.  Handbook of Granular Computing , 2008 .

[13]  Oscar Castillo,et al.  Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory , 2003, Appl. Soft Comput..

[14]  Oscar Castillo,et al.  Intelligent control of aircraft dynamic systems with a new hybrid neuro-fuzzy-fractal approach , 2002, Inf. Sci..

[15]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[16]  Tae Soo No,et al.  Control and simulation of arbitrary flight trajectory-tracking , 2005 .

[17]  S. J. Kim,et al.  Modeling, control, and simulation of dual rotor wind turbine generator system , 2009 .

[18]  Witold Pedrycz,et al.  Granular computing: an introduction , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[19]  Lotfi A. Zadeh,et al.  Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems , 1998, Soft Comput..

[20]  Jerry M. Mendel,et al.  Centroid of a type-2 fuzzy set , 2001, Inf. Sci..

[21]  Andrzej Bargiela,et al.  The roots of granular computing , 2006, 2006 IEEE International Conference on Granular Computing.

[22]  Shyi-Ming Chen,et al.  Granular Computing and Intelligent Systems , 2011 .

[23]  Oscar Castillo,et al.  Design of a Fuzzy System for the Longitudinal Control of an F-14 Airplane , 2011, Soft Computing for Intelligent Control and Mobile Robotics.