A 20-pW Discontinuous Switched-Capacitor Energy Harvester for Smart Sensor Applications

We present a discontinuous harvesting approach for switch capacitor dc–dc converters that enables ultralow-power energy harvesting. Smart sensor applications rely on ultralow-power energy harvesters to scavenge energy across a wide range of ambient power levels and charge the battery. Based on the key observation that energy source efficiency is higher than charge pump efficiency, we present a discontinuous harvesting technique that decouples the two efficiencies for a better tradeoff. By slowly accumulating charge on an input capacitor and then transferring it to a battery in burst mode, dc–dc converter switching and leakage losses can be optimally traded off with the loss incurred by nonideal maximum power point tracking operation. Harvester duty cycle is automatically modulated instead of charge pump operating frequency to match with the energy source input power level. The harvester uses a hybrid structure called a moving-sum charge pump for low startup energy upon a mode switch, an automatic conversion ratio modulator based on conduction loss optimization for fast conversion ratio increment, and a <15-pW asynchronous mode controller for ultralow-power operation. In 180-nm CMOS, the harvester achieves >40% end-to-end efficiency from 113 pW to 1.5 $\mu \text{W}$ with 20-pW minimum harvestable input power.

[1]  David Blaauw,et al.  Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[2]  Chris Van Hoof,et al.  5μW-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm , 2010, 2011 IEEE International Solid-State Circuits Conference.

[3]  Gyu-Hyeong Cho,et al.  23.5 An energy pile-up resonance circuit extracting maximum 422% energy from piezoelectric material in a dual-source energy-harvesting interface , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[4]  David Blaauw,et al.  A hybrid DC-DC converter for sub-microwatt sub-1V implantable applications , 2009, 2009 Symposium on VLSI Circuits.

[5]  Yogesh K. Ramadass Energy processing circuits for low-power applications , 2009 .

[6]  David Blaauw,et al.  A 66pW discontinuous switch-capacitor energy harvester for self-sustaining sensor applications , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[7]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[8]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2009, Nature.

[9]  Jose Luis Diaz-Bernabe,et al.  Photovoltaic module simulator implemented in SPICE and Simulink , 2015, 2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE).

[10]  Tai-Haur Kuo,et al.  An adaptive load-line tuning IC for photovoltaic module integrated mobile device with 470µs transient time, over 99% steady-state accuracy and 94% power conversion efficiency , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[11]  K. Strunz,et al.  20mV input boost converter for thermoelectric energy harvesting , 2009, 2009 Symposium on VLSI Circuits.

[12]  Hoi Lee,et al.  23.6 A 43V 400mW-to-21W global-search-based photovoltaic energy harvester with 350μs transient time, 99.9% MPPT efficiency, and 94% power efficiency , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[13]  David Blaauw,et al.  21.4 A >78%-efficient light harvester over 100-to-100klux with reconfigurable PV-cell network and MPPT circuit , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[14]  Timothy Denison,et al.  An implantable 5mW/channel dual-wavelength optogenetic stimulator for therapeutic neuromodulation research , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[15]  Horst Zimmermann,et al.  A maximum power-point tracker without digital signal processing in 0.35μm CMOS for automotive applications , 2012, 2012 IEEE International Solid-State Circuits Conference.

[16]  Michelle A. Rasmussen,et al.  An implantable biofuel cell for a live insect. , 2012, Journal of the American Chemical Society.

[17]  Edgar Sánchez-Sinencio,et al.  21.1 A single-cycle MPPT charge-pump energy harvester using a thyristor-based VCO without storage capacitor , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[18]  Anantha P. Chandrakasan,et al.  A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants , 2014, IEEE Journal of Solid-State Circuits.

[19]  Chulwoo Kim,et al.  Self-Powered 30 µW to 10 mW Piezoelectric Energy Harvesting System With 9.09 ms/V Maximum Power Point Tracking Time , 2014, IEEE Journal of Solid-State Circuits.

[20]  David Blaauw,et al.  23.3 A 3nW fully integrated energy harvester based on self-oscillating switched-capacitor DC-DC converter , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[21]  Paolo Cunzolo,et al.  21.7 A 0.036mbar circadian and cardiac intraocular pressure sensor for smart implantable lens , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[22]  Chris Van Hoof,et al.  Integrated capacitive power-management circuit for thermal harvesters with output power 10 to 1000µW , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[23]  Howard Tang,et al.  A 400 nW Single-Inductor Dual-Input–Tri-Output DC–DC Buck–Boost Converter With Maximum Power Point Tracking for Indoor Photovoltaic Energy Harvesting , 2015, IEEE Journal of Solid-State Circuits.

[24]  David Blaauw,et al.  24.3 An implantable 64nW ECG-monitoring mixed-signal SoC for arrhythmia diagnosis , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[25]  Jinhui Song,et al.  Integrated nanogenerators in biofluid. , 2007, Nano letters.

[26]  David Blaauw,et al.  A Successive-Approximation Switched-Capacitor DC–DC Converter With Resolution of $V_{\text{IN}}/{2^N}$ for a Wide Range of Input and Output Voltages , 2016, IEEE Journal of Solid-State Circuits.

[27]  Diana Hodgins,et al.  Healthy Aims: Developing New Medical Implants and Diagnostic Equipment , 2008, IEEE Pervasive Computing.