The epigenomic landscape regulating organogenesis in human embryos linked to developmental disorders

How the genome activates or silences transcriptional programmes governs organ formation. Little is known in human embryos undermining our ability to benchmark the fidelity of in vitro stem cell differentiation or cell programming, or interpret the pathogenicity of noncoding variation. Here, we studied histone modifications across thirteen tissues during human organogenesis. We integrated the data with transcription to build the first overview of how the human genome differentially regulates alternative organ fates including by repression. Promoters from nearly 20,000 genes partitioned into discrete states without showing bivalency. Key developmental gene sets were actively repressed outside of the appropriate organ. Candidate enhancers, functional in zebrafish, allowed imputation of tissue-specific and shared patterns of transcription factor binding. Overlaying more than 700 noncoding mutations from patients with developmental disorders allowed correlation to unanticipated target genes. Taken together, the data provide a new, comprehensive genomic framework for investigating normal and abnormal human development.

[1]  Joan,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[2]  James D Stephenson,et al.  Quantifying the contribution of recessive coding variation to developmental disorders , 2017, Science.

[3]  J. Noonan,et al.  High-Resolution Epigenomic Atlas of Human Embryonic Craniofacial Development , 2018, Cell reports.

[4]  Damian Smedley,et al.  The 100 000 Genomes Project: bringing whole genome sequencing to the NHS , 2018, British Medical Journal.

[5]  Caroline F. Wright,et al.  De novo mutations in regulatory elements in neurodevelopmental disorders , 2018, Nature.

[6]  Tyler H. Garvin,et al.  Ultraconserved Enhancers Are Required for Normal Development , 2018, Cell.

[7]  Xuedong Zhou,et al.  Bivalent Histone Modifications and Development. , 2017, Current stem cell research & therapy.

[8]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[9]  Michael C. Ostrowski,et al.  The ETS family of oncogenic transcription factors in solid tumours , 2017, Nature Reviews Cancer.

[10]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[11]  Helen E. Parkinson,et al.  The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) , 2016, Nucleic Acids Res..

[12]  J. Knight,et al.  XGR software for enhanced interpretation of genomic summary data, illustrated by application to immunological traits , 2016, Genome Medicine.

[13]  Daning Lu,et al.  Chromosome conformation elucidates regulatory relationships in developing human brain , 2016, Nature.

[14]  Dave T. Gerrard,et al.  An integrative transcriptomic atlas of organogenesis in human embryos , 2016, eLife.

[15]  Aaron T. L. Lun,et al.  csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows , 2015, Nucleic acids research.

[16]  Eran Meshorer,et al.  Chromatin remodeling and bivalent histone modifications in embryonic stem cells , 2015, EMBO reports.

[17]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[18]  Dave T. Gerrard,et al.  Human pancreas development , 2015, Development.

[19]  N. Hanley,et al.  TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors , 2015, Nature Cell Biology.

[20]  Jing Leng,et al.  Evolutionary changes in promoter and enhancer activity during human corticogenesis , 2015, Science.

[21]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[22]  Andrew R. Gehrke,et al.  Deep conservation of wrist and digit enhancers in fish , 2014, Proceedings of the National Academy of Sciences.

[23]  D. Page,et al.  Poised chromatin in the mammalian germ line , 2014, Development.

[24]  David G. Robinson,et al.  subSeq: Determining Appropriate Sequencing Depth Through Efficient Read Subsampling , 2014, Bioinform..

[25]  A. Hattersley,et al.  GATA4 Mutations Are a Cause of Neonatal and Childhood-Onset Diabetes , 2014, Diabetes.

[26]  Eric Nestler,et al.  ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases , 2014, BMC Genomics.

[27]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[28]  Anna Murray,et al.  Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis , 2013, Nature Genetics.

[29]  Katherine S. Pollard,et al.  Integrating Diverse Datasets Improves Developmental Enhancer Prediction , 2013, PLoS Comput. Biol..

[30]  A. Visel,et al.  Rapid and Pervasive Changes in Genome-wide Enhancer Usage during Mammalian Development , 2013, Cell.

[31]  Laura E. DeMare,et al.  The Evolution of Lineage-Specific Regulatory Activities in the Human Embryonic Limb , 2013, Cell.

[32]  V. Christoffels,et al.  A molecular and genetic outline of cardiac morphogenesis , 2013, Acta physiologica.

[33]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[34]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[35]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[36]  S. Mundlos,et al.  Deletions in PITX1 cause a spectrum of lower-limb malformations including mirror-image polydactyly , 2012, European Journal of Human Genetics.

[37]  A. Hattersley,et al.  GATA6 haploinsufficiency causes pancreatic agenesis in humans , 2011, Nature Genetics.

[38]  Brent S. Pedersen,et al.  BioStar: An Online Question & Answer Resource for the Bioinformatics Community , 2011, PLoS Comput. Biol..

[39]  H. Firth,et al.  The Deciphering Developmental Disorders (DDD) study , 2011, Developmental medicine and child neurology.

[40]  Timothy J. Durham,et al.  Systematic analysis of chromatin state dynamics in nine human cell types , 2011, Nature.

[41]  M. Palassini,et al.  Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. , 2010, Genome research.

[42]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[43]  Michael D. Wilson,et al.  Five-Vertebrate ChIP-seq Reveals the Evolutionary Dynamics of Transcription Factor Binding , 2010, Science.

[44]  K. Pollard,et al.  Detection of nonneutral substitution rates on mammalian phylogenies. , 2010, Genome research.

[45]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[46]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[47]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[48]  Klaudia Walter,et al.  Open access, freely available online PLoS BIOLOGY Highly Conserved Non-Coding Sequences Are Associated with Vertebrate Development , 2022 .

[49]  K. Kawakami,et al.  A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. , 2004, Developmental cell.