Synaptic vesicle pools and dynamics.

Synaptic vesicles release neurotransmitter at chemical synapses, thus initiating the flow of information in neural networks. To achieve this, vesicles undergo a dynamic cycle of fusion and retrieval to maintain the structural and functional integrity of the presynaptic terminals in which they reside. Moreover, compelling evidence indicates these vesicles differ in their availability for release and mobilization in response to stimuli, prompting classification into at least three different functional pools. Ongoing studies of the molecular and cellular bases for this heterogeneity attempt to link structure to physiology and clarify how regulation of vesicle pools influences synaptic strength and presynaptic plasticity. We discuss prevailing perspectives on vesicle pools, the role they play in shaping synaptic transmission, and the open questions that challenge current understanding.

[1]  B. Gustafsson,et al.  Vesicle release probability and pre‐primed pool at glutamatergic synapses in area CA1 of the rat neonatal hippocampus , 2001, The Journal of physiology.

[2]  S. Palay SYNAPSES IN THE CENTRAL NERVOUS SYSTEM , 1956, The Journal of biophysical and biochemical cytology.

[3]  W. Catterall,et al.  Regulation of Presynaptic CaV2.1 Channels by Ca2+ Sensor Proteins Mediates Short-Term Synaptic Plasticity , 2008, Neuron.

[4]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[5]  R. Tsien,et al.  Adaptation to Synaptic Inactivity in Hippocampal Neurons , 2005, Neuron.

[6]  R. Silver,et al.  Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse , 2006, Nature.

[7]  John F. Wesseling,et al.  Augmentation Is a Potentiation of the Exocytotic Process , 1999, Neuron.

[8]  T. Südhof,et al.  Calcium control of neurotransmitter release. , 2012, Cold Spring Harbor perspectives in biology.

[9]  J. Borst,et al.  The Reduced Release Probability of Releasable Vesicles during Recovery from Short-Term Synaptic Depression , 1999, Neuron.

[10]  Leonard K. Kaczmarek,et al.  High-frequency firing helps replenish the readily releasable pool of synaptic vesicles , 1998, Nature.

[11]  Charles F Stevens,et al.  Discharge of the readily releasable pool with action potentials at hippocampal synapses. , 2007, Journal of neurophysiology.

[12]  C. Stevens,et al.  Heterogeneity of Release Probability, Facilitation, and Depletion at Central Synapses , 1997, Neuron.

[13]  C. Stevens,et al.  An evaluation of causes for unreliability of synaptic transmission. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[14]  K. Moulder,et al.  Spontaneous and Evoked Glutamate Release Activates Two Populations of NMDA Receptors with Limited Overlap , 2008, The Journal of Neuroscience.

[15]  R. Muller,et al.  Place cell discharge is extremely variable during individual passes of the rat through the firing field. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[16]  L. Lagnado,et al.  Synaptic Depression and the Kinetics of Exocytosis in Retinal Bipolar Cells , 2000, The Journal of Neuroscience.

[17]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[18]  Thomas C. Südhof,et al.  The Synaptic VesicleCycle Revisited , 2000, Neuron.

[19]  A. W. Liley,et al.  An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. , 1953, Journal of neurophysiology.

[20]  A. Lundberg,et al.  Presynaptic potentiation and depression of neuromuscular transmission in frog and rat. , 1953, Acta physiologica Scandinavica. Supplementum.

[21]  T. Otis,et al.  Direct Measurement of AMPA Receptor Desensitization Induced by Glutamatergic Synaptic Transmission , 1996, The Journal of Neuroscience.

[22]  E. Neher,et al.  Quantitative Relationship between Transmitter Release and Calcium Current at the Calyx of Held Synapse , 2001, The Journal of Neuroscience.

[23]  T. Südhof,et al.  Cell biology of Ca 2+ -triggered exocytosis , 2010 .

[24]  William J Tyler,et al.  Synaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Blakely,et al.  Vesicular and plasma membrane transporters for neurotransmitters. , 2012, Cold Spring Harbor perspectives in biology.

[26]  E. Neher,et al.  Cytosolic Ca2+ Acts by Two Separate Pathways to Modulate the Supply of Release-Competent Vesicles in Chromaffin Cells , 1998, Neuron.

[27]  Christian Rosenmund,et al.  Nonuniform probability of glutamate release at a hippocampal synapse. , 1993, Science.

[28]  W. Betz,et al.  Synaptic vesicle pools , 2005, Nature Reviews Neuroscience.

[29]  Lars Kastrup,et al.  Limited Intermixing of Synaptic Vesicle Components upon Vesicle Recycling , 2010, Traffic.

[30]  T. Sudhof,et al.  The synaptic vesicle cycle. , 2004, Annual review of neuroscience.

[31]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[32]  P. De Camilli,et al.  Synaptic vesicle dynamics in living cultured hippocampal neurons visualized with CY3-conjugated antibodies directed against the lumenal domain of synaptotagmin , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  R S Zucker,et al.  Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. , 1994, Biophysical journal.

[34]  JoAnn Buchanan,et al.  Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1-43 photoconversion , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  F. Sjöstrand The ultrastructure of the innersegments of the retinal rods of the guinea pig eye as revealed by electron microscopy. , 1953 .

[36]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[37]  J. Borst,et al.  Two Modes of Vesicle Recycling in the Rat Calyx of Held , 2003, The Journal of Neuroscience.

[38]  John F. Wesseling,et al.  Identification of a Novel Process Limiting the Rate of Synaptic Vesicle Cycling at Hippocampal Synapses , 1999, Neuron.

[39]  Kira E. Poskanzer,et al.  Mobilization and fusion of a non-recycling pool of synaptic vesicles under conditions of endocytic blockade , 2004, Neuropharmacology.

[40]  P. Saggau,et al.  Presynaptic inhibition of elicited neurotransmitter release , 1997, Trends in Neurosciences.

[41]  R. Fitzsimonds,et al.  The Presynaptic Release Apparatus Is Functional in the Absence of Dendritic Contact and Highly Mobile within Isolated Axons , 2003, Neuron.

[42]  L. Dobrunz,et al.  Responses of excitatory hippocampal synapses to natural stimulus patterns reveal a decrease in short‐term facilitation and increase in short‐term depression during postnatal development , 2006, Hippocampus.

[43]  J. Burrone,et al.  A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse , 2009, Nature Neuroscience.

[44]  B. Katz,et al.  Spontaneous subthreshold activity at motor nerve endings , 1952, The Journal of physiology.

[45]  Jurgen Klingauf,et al.  Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool , 2007, Nature Neuroscience.

[46]  W. Ho,et al.  Post-tetanic increase in the fast-releasing synaptic vesicle pool at the expense of the slowly releasing pool , 2010, The Journal of general physiology.

[47]  F. C. Macintosh,et al.  ACETYLCHOLINE METABOLISM OF A SYMPATHETIC GANGLION , 1961 .

[48]  Kaori Ikeda,et al.  Counting the number of releasable synaptic vesicles in a presynaptic terminal , 2009, Proceedings of the National Academy of Sciences.

[49]  Ege T. Kavalali,et al.  Rapid Reuse of Readily Releasable Pool Vesicles at Hippocampal Synapses , 2000, Neuron.

[50]  J. Waters,et al.  Phorbol Esters Potentiate Evoked and Spontaneous Release by Different Presynaptic Mechanisms , 2000, The Journal of Neuroscience.

[51]  Stephen J. Smith,et al.  Potentiation of Evoked Vesicle Turnover at Individually Resolved Synaptic Boutons , 1996, Neuron.

[52]  T. Branco,et al.  Recruitment of resting vesicles into recycling pools supports NMDA receptor-dependent synaptic potentiation in cultured hippocampal neurons , 2012, The Journal of physiology.

[53]  S. Hell,et al.  High- and low-mobility stages in the synaptic vesicle cycle. , 2010, Biophysical journal.

[54]  C. Stevens,et al.  Regulation of the Readily Releasable Vesicle Pool by Protein Kinase C , 1998, Neuron.

[55]  David W. Nauen,et al.  Probing vesicle dynamics in single hippocampal synapses. , 2005, Biophysical journal.

[56]  D. Elmqvist,et al.  A quantitative study of end‐plate potentials in isolated human muscle. , 1965, The Journal of physiology.

[57]  G. Palade,et al.  Electron microscope observations of interneuronal and neuromuscular synapses , 1954 .

[58]  T. A. Ryan,et al.  CDK5 Serves as a Major Control Point in Neurotransmitter Release , 2010, Neuron.

[59]  R. Tsien,et al.  Influence of Synaptic Vesicle Position on Release Probability and Exocytotic Fusion Mode , 2012, Science.

[60]  C. Guatimosim,et al.  Synaptic Vesicle Pools at the Frog Neuromuscular Junction , 2003, Neuron.

[61]  E. Neher,et al.  Calmodulin Mediates Rapid Recruitment of Fast-Releasing Synaptic Vesicles at a Calyx-Type Synapse , 2001, Neuron.

[62]  W. Regehr,et al.  Calcium-Dependent Isoforms of Protein Kinase C Mediate Posttetanic Potentiation at the Calyx of Held , 2011, Neuron.

[63]  U Valentin Nägerl,et al.  In Vivo Imaging of Intersynaptic Vesicle Exchange Using VGLUT1Venus Knock-In Mice , 2011, The Journal of Neuroscience.

[64]  S. Siegelbaum,et al.  Presynaptic Induction and Expression of Homosynaptic Depression at Aplysia Sensorimotor Neuron Synapses , 1998, The Journal of Neuroscience.

[65]  C. Stevens,et al.  Very short-term plasticity in hippocampal synapses. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[66]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[67]  L. Abbott,et al.  Synaptic computation , 2004, Nature.

[68]  Y. Kidokoro,et al.  Exocytosis and Endocytosis of Synaptic Vesicles and Functional Roles of Vesicle Pools: Lessons from the Drosophila Neuromuscular Junction , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[69]  P. Jonas,et al.  A large pool of releasable vesicles in a cortical glutamatergic synapse , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Jacob Matz,et al.  Rapid structural alterations of the active zone lead to sustained changes in neurotransmitter release , 2010, Proceedings of the National Academy of Sciences.

[71]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[72]  Venkatesh N. Murthy,et al.  Synaptic vesicles retain their identity through the endocytic cycle , 1998, Nature.

[73]  M. Jackson,et al.  A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal. , 1993, Journal of neurophysiology.

[74]  J. Meldolesi,et al.  Neurotransmitter release: fusion or 'kiss-and-run'? , 1994, Trends in cell biology.

[75]  G. Matthews,et al.  Evidence That Vesicles on the Synaptic Ribbon of Retinal Bipolar Neurons Can Be Rapidly Released , 1996, Neuron.

[76]  E. Neher,et al.  Combining Deconvolution and Noise Analysis for the Estimation of Transmitter Release Rates at the Calyx of Held , 2001, The Journal of Neuroscience.

[77]  W. Thoreson,et al.  Calcium Regulates Vesicle Replenishment at the Cone Ribbon Synapse , 2010, The Journal of Neuroscience.

[78]  C. Stevens,et al.  Changes in reliability of synaptic function as a mechanism for plasticity , 1994, Nature.

[79]  R. Malinow,et al.  The probability of transmitter release at a mammalian central synapse , 1993, Nature.

[80]  Takeshi Sakaba,et al.  Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release , 2008, Neuron.

[81]  Y. Sara,et al.  Use-Dependent AMPA Receptor Block Reveals Segregation of Spontaneous and Evoked Glutamatergic Neurotransmission , 2011, The Journal of Neuroscience.

[82]  Xinran Liu,et al.  Acute Dynamin Inhibition Dissects Synaptic Vesicle Recycling Pathways That Drive Spontaneous and Evoked Neurotransmission , 2010, The Journal of Neuroscience.

[83]  Nils Brose,et al.  Molecular Dynamics of a Presynaptic Active Zone Protein Studied in Munc13-1–Enhanced Yellow Fluorescent Protein Knock-In Mutant Mice , 2006, The Journal of Neuroscience.

[84]  G. Matthews,et al.  Depletion and Replenishment of Vesicle Pools at a Ribbon-Type Synaptic Terminal , 1997, The Journal of Neuroscience.

[85]  T. Südhof,et al.  Munc 13 C 2 B domain is an activity-dependent Ca 2 + regulator of synaptic exocytosis , 2010 .

[86]  Xinran Liu,et al.  An Isolated Pool of Vesicles Recycles at Rest and Drives Spontaneous Neurotransmission , 2005, Neuron.

[87]  T. Schikorski,et al.  Morphological correlates of functionally defined synaptic vesicle populations , 2001, Nature Neuroscience.

[88]  T. Sejnowski,et al.  Heterogeneous Release Properties of Visualized Individual Hippocampal Synapses , 1997, Neuron.

[89]  T. Reese Synaptic vesicle exocytosis. , 1981, JAMA.

[90]  Christian Rosenmund,et al.  The effects of temperature on vesicular supply and release in autaptic cultures of rat and mouse hippocampal neurons , 2002, The Journal of physiology.

[91]  C. Garner,et al.  Presynaptic function in health and disease , 2011, Trends in Neurosciences.

[92]  T. Kuner,et al.  A small pool of vesicles maintains synaptic activity in vivo , 2011, Proceedings of the National Academy of Sciences.

[93]  Alexander M Aravanis,et al.  Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling , 2001, Trends in Neurosciences.

[94]  Zhiping P Pang,et al.  Cell biology of Ca2+-triggered exocytosis. , 2010, Current opinion in cell biology.

[95]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[96]  C. Stevens,et al.  Reversal of synaptic vesicle docking at central synapses , 1999, Nature Neuroscience.

[97]  Y. Goda,et al.  Readily releasable pool size changes associated with long term depression. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[98]  R. Schneggenburger,et al.  Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion , 2005, Nature.

[99]  Stefan W. Hell,et al.  Supporting Online Material Materials and Methods Figs. S1 to S9 Tables S1 and S2 References Video-rate Far-field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2022 .

[100]  R. Tsien,et al.  Kiss‐and‐run and full‐collapse fusion as modes of exo‐endocytosis in neurosecretion , 2006, Journal of neurochemistry.

[101]  C. Stevens,et al.  Facilitation and depression at single central synapses , 1995, Neuron.

[102]  Silvio O Rizzoli,et al.  The same synaptic vesicles drive active and spontaneous release , 2010, Nature Neuroscience.

[103]  E. De robertis,et al.  SOME FEATURES OF THE SUBMICROSCOPIC MORPHOLOGY OF SYNAPSES IN FROG AND EARTHWORM , 1955, The Journal of biophysical and biochemical cytology.

[104]  B. Gustafsson,et al.  Factors explaining heterogeneity in short‐term synaptic dynamics of hippocampal glutamatergic synapses in the neonatal rat , 2001, The Journal of physiology.

[105]  John F. Wesseling,et al.  A New Kinetic Framework for Synaptic Vesicle Trafficking Tested in Synapsin Knock-Outs , 2011, The Journal of Neuroscience.

[106]  Charles F Stevens,et al.  Activity-Dependent Modulation of the Rate at which Synaptic Vesicles Become Available to Undergo Exocytosis , 1998, Neuron.

[107]  E. Neher,et al.  The reserve pool of synaptic vesicles acts as a buffer for proteins involved in synaptic vesicle recycling , 2011, Proceedings of the National Academy of Sciences.

[108]  Susanne E. Ahmari,et al.  Assembly of presynaptic active zones from cytoplasmic transport packets , 2000, Nature Neuroscience.

[109]  Thomas C. Südhof,et al.  Complexins Regulate a Late Step in Ca2+-Dependent Neurotransmitter Release , 2001, Cell.

[110]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[111]  Jianhua Xu,et al.  The Decrease in the Presynaptic Calcium Current Is a Major Cause of Short-Term Depression at a Calyx-Type Synapse , 2005, Neuron.

[112]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[113]  Yunfeng Hua,et al.  A common origin of synaptic vesicles undergoing evoked and spontaneous fusion , 2010, Nature Neuroscience.

[114]  John F. Wesseling,et al.  Kinetic isolation of a slowly recovering component of short-term depression during exhaustive use at excitatory hippocampal synapses. , 2008, Journal of neurophysiology.

[115]  J. Eilers,et al.  Bassoon Speeds Vesicle Reloading at a Central Excitatory Synapse , 2010, Neuron.

[116]  R. Tsien,et al.  Properties of synaptic transmission at single hippocampal synaptic boutons , 1995, Nature.

[117]  C. Stevens,et al.  "Kiss and run" exocytosis at hippocampal synapses. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[118]  D. Kennedy,et al.  QUANTITATIVE ASPECTS OF TRANSMITTER RELEASE , 1970, The Journal of cell biology.

[119]  T. Reese,et al.  Structural changes after transmitter release at the frog neuromuscular junction , 1981, The Journal of cell biology.

[120]  L. Lagnado,et al.  Two Actions of Calcium Regulate the Supply of Releasable Vesicles at the Ribbon Synapse of Retinal Bipolar Cells , 1999, The Journal of Neuroscience.

[121]  K. Harris,et al.  Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses , 1995, Neuropharmacology.

[122]  T. A. Ryan,et al.  The efficiency of the synaptic vesicle cycle at central nervous system synapses. , 2006, Trends in cell biology.

[123]  N. Ziv,et al.  Syntaxin1A Lateral Diffusion Reveals Transient and Local SNARE Interactions , 2011, The Journal of Neuroscience.

[124]  W. Betz,et al.  Active Zones and the Readily Releasable Pool of Synaptic Vesicles at the Neuromuscular Junction of the Mouse , 2011, The Journal of Neuroscience.

[125]  B. Katz,et al.  Biophysical aspects of neuro-muscular transmission. , 1956, Progress in biophysics and biophysical chemistry.

[126]  J. Kornhuber,et al.  Systematic heterogeneity of fractional vesicle pool sizes and release rates of hippocampal synapses. , 2011, Biophysical journal.

[127]  E. Neher,et al.  Vesicle pools and short-term synaptic depression: lessons from a large synapse , 2002, Trends in Neurosciences.

[128]  T. Südhof,et al.  The synaptic vesicle cycle revisited. , 2000, Neuron.

[129]  Ege T. Kavalali,et al.  Vti1a Identifies a Vesicle Pool that Preferentially Recycles at Rest and Maintains Spontaneous Neurotransmission , 2012, Neuron.

[130]  Tiago Branco,et al.  A Vesicle Superpool Spans Multiple Presynaptic Terminals in Hippocampal Neurons , 2010, Neuron.

[131]  P. Jonas,et al.  Efficacy and Stability of Quantal GABA Release at a Hippocampal Interneuron–Principal Neuron Synapse , 2000, The Journal of Neuroscience.

[132]  Craig C. Garner,et al.  v-SNARE Composition Distinguishes Synaptic Vesicle Pools , 2011, Neuron.

[133]  R. Balice-Gordon,et al.  Heterogeneity in Synaptic Vesicle Release at Neuromuscular Synapses of Mice Expressing SynaptopHluorin , 2008, The Journal of Neuroscience.

[134]  T. A. Ryan,et al.  A heterogeneous “resting” pool of synaptic vesicles that is dynamically interchanged across boutons in mammalian CNS synapses , 2008, Brain cell biology.

[135]  N. Ziv,et al.  Exchange and Redistribution Dynamics of the Cytoskeleton of the Active Zone Molecule Bassoon , 2009, The Journal of Neuroscience.

[136]  K. Moulder,et al.  Reluctant Vesicles Contribute to the Total Readily Releasable Pool in Glutamatergic Hippocampal Neurons , 2005, The Journal of Neuroscience.

[137]  T. Schikorski,et al.  Inactivity Produces Increases in Neurotransmitter Release and Synapse Size , 2001, Neuron.

[138]  Nils Brose,et al.  Phorbol Esters Modulate Spontaneous and Ca2+-Evoked Transmitter Release via Acting on Both Munc13 and Protein Kinase C , 2008, The Journal of Neuroscience.

[139]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[140]  D. Zenisek Vesicle association and exocytosis at ribbon and extraribbon sites in retinal bipolar cell presynaptic terminals , 2008, Proceedings of the National Academy of Sciences.

[141]  T. Südhof,et al.  Munc13 C2B-Domain – an Activity-Dependent Ca2+-Regulator of Synaptic Exocytosis , 2010, Nature Structural &Molecular Biology.

[142]  R. Tsien,et al.  Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles , 2007, Proceedings of the National Academy of Sciences.

[143]  John F. Wesseling,et al.  Limit on the Role of Activity in Controlling the Release-Ready Supply of Synaptic Vesicles , 2002, The Journal of Neuroscience.

[144]  Adel Zeidan,et al.  Use Dependence of Presynaptic Tenacity , 2011, The Journal of Neuroscience.

[145]  P. De Camilli,et al.  Cell biology of the presynaptic terminal. , 2003, Annual review of neuroscience.

[146]  Jack Waters,et al.  Vesicle pool partitioning influences presynaptic diversity and weighting in rat hippocampal synapses , 2002, The Journal of physiology.

[147]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[148]  T. Schikorski,et al.  Quantitative Ultrastructural Analysis of Hippocampal Excitatory Synapses Materials and Methods Terminology Fixation and Embedding , 2022 .

[149]  Kevin Staras,et al.  Constitutive sharing of recycling synaptic vesicles between presynaptic boutons , 2006, Nature Neuroscience.

[150]  C. Stevens,et al.  Response of Hippocampal Synapses to Natural Stimulation Patterns , 1999, Neuron.