Description of the morphology of optical vortices using the orbital angular momentum and its components

A description of the local properties of the transverse profile of a light beam near a screw dislocation of the wavefront (an optical vortex) based on the examination of a model beam obtained upon transmission of the original vortex beam through an imaginary infinitely small aperture with the center on the beam axis is proposed. Such an aperture should not violate the symmetry of the closest vicinity of the vortex and should have “soft” edges ensuring the complete applicability of the theory of paraxial beams. The geometric characteristics of the anisotropy of the optical vortex are connected with the orbital angular momentum of the model beam and, thus, with the physical characteristics of the transverse energy circulation near the axis of the vortex. Such an approach allows the establishment of an additional physical meaning of the parameters of the optical vortex and the orbital angular momentum. In particular, the “vortex” part of the angular momentum in the closest vicinity of the vortex turns out to be equivalent to the previously introduced anisotropy factor of the vortex.

[1]  Spatial evolution of the morphology of an optical vortex dipole , 2004 .

[2]  A. Bekshaev,et al.  An optical vortex as a rotating body: mechanical features of a singular light beam , 2004 .

[3]  M S Soskin,et al.  Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  R. Simon,et al.  Optical phase space, Wigner representation, and invariant quality parameters. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  Parameterization and orbital angular momentum of anisotropic dislocations , 1996 .

[6]  L. Torner,et al.  Propagation and control of noncanonical optical vortices. , 2001, Optics letters.

[7]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[8]  M. Brereton Classical Electrodynamics (2nd edn) , 1976 .

[9]  Isaac Freund,et al.  Optical dislocation networks in highly random media , 1993 .

[10]  M J Padgett,et al.  Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. , 2002, Physical review letters.

[11]  V. B. Berestet͡skiĭ,et al.  Quantum Electrodynamics , 2021, Introduction to Quantum Mechanics.

[12]  Yuri S. Kivshar,et al.  Institute of Physics Publishing Journal of Optics A: Pure and Applied Optics Nonlinear Optical Beams Carrying Phase Dislocations , 2004 .

[13]  Mark R. Dennis,et al.  Local properties and statistics of phase singularities in generic wavefields , 2001, Other Conferences.

[14]  Mikhail V. Vasnetsov,et al.  Transformation of higher-order optical vortices upon focusing by an astigmatic lens , 2004 .

[15]  Guy Indebetouw,et al.  Optical Vortices and Their Propagation , 1993 .

[16]  Michael V. Berry,et al.  Paraxial beams of spinning light , 1998, Other Conferences.

[17]  Norman R. Heckenberg,et al.  Topological charge and angular momentum of light beams carrying optical vortices , 1997 .

[18]  M. R. Dennis Local phase structure of wave dislocation lines: twist and twirl , 2003 .

[19]  M. S. Soskin,et al.  Chapter 4 - Singular optics , 2001 .

[20]  Filippus S. Roux,et al.  Coupling of noncanonical optical vortices , 2004 .

[21]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[22]  Filippus S. Roux,et al.  Distribution of angular momentum and vortex morphology in optical beams , 2004 .

[23]  Miles J. Padgett,et al.  IV The Orbital Angular Momentum of Light , 1999 .

[24]  Alexander Ya. Bekshaev Mechanical properties of light waves with phase singularity , 1999, Correlation Optics.