Mesh-centered finite differences from nodal finite elements for ellitic problems

After it is shown that the classical ve points mesh-centered nite diierence scheme can be derived from a low order nodal nite element scheme by using nonstandard quadrature formulae, higher order block mesh-centered nite diierence schemes for second-order elliptic problems are derived from higher order nodal nite elements with nonstandard quadrature formulae as before, combined to a procedure known as \transverse integration". Numerical experiments with uniform and nonuniform meshes and diierent types of boundary conditions connrm the theoretical predictions, in discrete as well as continuous norms. Dii erences Finies Centr ees a partir d'El ements Finis Nodaux R esum e : Apr es avoir montr e que le sch ema en dii erences nies centr e clas-sique a cinq points peut ^ etre obtenu a partir d'un el ement ni nodal de bas ordre en utilisant des formules de quadrature num eriques non standard, on d eveloppe des sch emas a cinq blocs d'ordre plus elev e avec des quadratures num eriques non standard comme plus haut, combin ees avec une proc edure connue sous le nom d'int egration transversale. Des exp eriences num eriques avec des mailles uniformes ou pas et dii erents types de conditions a la fron-ti ere, connrment les pr edictions th eoriques en normes continues et discr etes.

[1]  D. W. Arthur,et al.  Methods of numerical Integration (2nd edition), by Philip J. Davis and Philip Rabinowitz. Pp 612. £36·50. 1984. ISBN 0-12-206360-0 (Academic Press) , 1986, The Mathematical Gazette.

[2]  H. Saunders Book Reviews : FINITE ELEMENT ANALYSIS FUNDAMENTALS R.H. Gallagher Prentice Hall, Inc., Englewood Cliffs, New Jersey (1975) , 1977 .

[3]  Jean Elizabeth Roberts,et al.  A constructive method for deriving finite elements of nodal type , 1988 .

[4]  R. D. Lawrence PROGRESS IN NODAL METHODS FOR THE SOLUTION OF THE NEUTRON DIFFUSION AND TRANSPORT EQUATIONS , 1986 .

[5]  J. Hennart,et al.  A general family of nodal schemes , 1986 .

[6]  J. P. Hennart,et al.  On the relationship between nodal schemes and mixed-hybrid finite elements , 1993 .

[7]  J. Oden Finite Elements: A Second Course , 1983 .

[8]  Peter A. Forsyth,et al.  Quadratic convergence for cell-centered grids , 1988 .

[9]  Jian Shen,et al.  Application of superconvergence to problems in the simulation of miscible displacement , 1991 .

[10]  J. Hennart On the numerical analysis of analytical nodal methods , 1988 .

[11]  J. P. Hennart A finite element approach to point- and mesh-centered finite difference schemes over rectangular grids , 1992 .

[12]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[13]  P. Lesaint,et al.  On the convergence of Wilson's nonconforming element for solving the elastic problems , 1975 .

[14]  A. Ougouag,et al.  ILLICO-HO: A Self-Consistent Higher Order Coarse-Mesh Nodal Method , 1988 .

[15]  J. P. Hennart,et al.  Singularities in the finite element approximation of two-dimensional diffusion problems , 1977 .

[16]  D. Altiparmakov,et al.  Variational formulation of a higher order nodal diffusion method , 1990 .

[17]  Jian Shen,et al.  A block finite difference scheme for second-order elliptic problems with discontinuous coefficients , 1996 .

[18]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[19]  A. Weiser,et al.  On convergence of block-centered finite differences for elliptic-problems , 1988 .

[20]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[21]  Efficient higher order nodal finite element formulations for neutron multigroup diffusion equations , 1996 .

[22]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[23]  T. F. Russell,et al.  Finite element and finite difference methods for continuous flows in porous media. , 1800 .

[24]  J. Nitsche Convergence of Nonconforming Methods , 1974 .

[25]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[26]  Thomas A. Manteuffel,et al.  The numerical solution of second-order boundary value problems on nonuniform meshes , 1986 .