Cepheids in M31: The PAndromeda Cepheid Sample
暂无分享,去创建一个
R. Bender | S. Seitz | W. Burgett | P. Draper | N. Kaiser | R. Kudritzki | N. Metcalfe | J. Tonry | R. Wainscoat | J. Koppenhoefer | K. Hodapp | C. Goessl | U. Hopp | A. Riffeser | C. Obermeier | J. Snigula | Chien-Hsiu Lee | M. Kodric
[1] N. Mowlavi,et al. On the effect of rotation on populations of classical Cepheids. I. Predictions at solar metallicity , 2014, 1403.0809.
[2] N. N. Kireeva,et al. General catalogue of variable stars: Version GCVS 5.1 , 2017 .
[3] W. M. Wood-Vasey,et al. The Pan-STARRS1 Surveys , 2016, 1612.05560.
[4] Gaia Collaboration,et al. The Gaia mission , 2016, 1609.04153.
[5] A. Riess,et al. OPTICAL IDENTIFICATION OF CEPHEIDS IN 19 HOST GALAXIES OF TYPE Ia SUPERNOVAE AND NGC 4258 WITH THE HUBBLE SPACE TELESCOPE , 2016, 1607.08658.
[6] Brad E. Tucker,et al. A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.
[7] M. Catelán,et al. THE ARAUCARIA PROJECT: A STUDY OF THE CLASSICAL CEPHEID IN THE ECLIPSING BINARY SYSTEM OGLE LMC562.05.9009 IN THE LARGE MAGELLANIC CLOUD , 2015, 1511.02826.
[8] E. Rykoff,et al. On the Impact of Cepheid Outliers on the Distance Ladder , 2015, 1507.07523.
[9] L. Girardi,et al. PARSEC evolutionary tracks of massive stars up to 350 M ☉ at metallicities 0.0001 ≤ Z ≤ 0.04 , 2015, 1506.01681.
[10] B. Williams,et al. Panchromatic Hubble Andromeda Treasury XIII: The Cepheid period-luminosity relation in M31 , 2015, 1504.05118.
[11] L. Macri,et al. CEPHEID VARIABLES IN THE MASER-HOST GALAXY NGC 4258 , 2015, 1503.07953.
[12] R. Bender,et al. THE M31 NEAR-INFRARED PERIOD–LUMINOSITY RELATION AND ITS NON-LINEARITY FOR δ Cep VARIABLES WITH 0.5 ⩽ log (P) ⩽ 1.7 , 2014, 1405.5218.
[13] L. Girardi,et al. New PARSEC evolutionary tracks of massive stars at low metallicity: testing canonical stellar evolution in nearby star-forming dwarf galaxies , 2014, 1410.1745.
[14] Mauro Barbieri,et al. Improving PARSEC models for very low mass stars , 2014, 1409.0322.
[15] G. Efstathiou. H 0 revisited , 2013, 1311.3461.
[16] R. Bender,et al. PROPERTIES OF M31. III. CANDIDATE BEAT CEPHEIDS FROM PS1 PANDROMEDA DATA AND THEIR IMPLICATION ON METALLICITY GRADIENT , 2013, 1308.6576.
[17] Lincoln Greenhill,et al. TOWARD A NEW GEOMETRIC DISTANCE TO THE ACTIVE GALAXY NGC 4258. III. FINAL RESULTS AND THE HUBBLE CONSTANT , 2013, 1307.6031.
[18] R. Kudritzki,et al. An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.
[19] A. Garc'ia-Varela,et al. A study on the universality and linearity of the Leavitt law in the LMC and SMC galaxies , 2013, 1303.0809.
[20] R. Bender,et al. PROPERTIES OF M31. II. A CEPHEID DISK SAMPLE DERIVED FROM THE FIRST YEAR OF PS1 PANDROMEDA DATA , 2013, 1301.6170.
[21] European Southern Observatory,et al. ON THE DISTANCE OF THE MAGELLANIC CLOUDS USING CEPHEID NIR AND OPTICAL–NIR PERIOD–WESENHEIT RELATIONS , 2012, 1212.4376.
[22] V. Ripepi,et al. Predicted properties of galactic and magellanic classical Cepheids in the SDSS filters , 2012, 1209.4090.
[23] L. Girardi,et al. parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.
[24] T. Lauer,et al. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY , 2012, 1204.0010.
[25] R. J. Wainscoat,et al. THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.
[26] A. Riess,et al. CEPHEID PERIOD–LUMINOSITY RELATIONS IN THE NEAR-INFRARED AND THE DISTANCE TO M31 FROM THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 , 2011, 1110.3769.
[27] J. Koppenhoefer,et al. MDia and POTS , 2011, 1112.2121.
[28] W. Gieren,et al. CONCERNING THE CLASSICAL CEPHEID VIC WESENHEIT FUNCTION'S STRONG METALLICITY DEPENDENCE , 2011, 1110.1629.
[29] T. Grav,et al. PAndromeda—FIRST RESULTS FROM THE HIGH-CADENCE MONITORING OF M31 WITH Pan-STARRS 1 , 2011, 1109.6320.
[30] B. Madore,et al. TWO NEW TESTS OF THE METALLICITY SENSITIVITY OF THE CEPHEID PERIOD–LUMINOSITY RELATION (THE LEAVITT LAW) , 2011, 1103.6235.
[31] Douglas P. Finkbeiner,et al. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.
[32] B. Madore,et al. The Hubble Constant , 2010, 1004.1856.
[33] M. Marconi,et al. INSIGHTS INTO THE CEPHEID DISTANCE SCALE , 2010, 1004.0363.
[34] I. Ribas,et al. The distance to the Andromeda galaxy from eclipsing binaries , 2009, 0911.3391.
[35] S. Seitz,et al. Properties of M31 - I. Dust. Basic properties and a discussion about age-dependent dust heating , 2009, 0907.0669.
[36] K. Abazajian,et al. THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.
[37] S. Kanbur,et al. Testing the nonlinearity of the BVIcJHKs period-luminosity relations for the Large Magellanic Cloud Cepheids , 2007, 0710.5128.
[38] F. Vilardell,et al. A comprehensive study of Cepheid variables in the Andromeda galaxy. Period distribution, blending, a , 2007, 0707.2965.
[39] P. Reegen. SigSpec - I. Frequency- and Phase-Resolved Significance in Fourier Space , 2007, physics/0703160.
[40] Jean-Luc Starck,et al. Astronomical Data Analysis , 2007 .
[41] I. Ribas,et al. Eclipsing binaries suitable for distance determination in the Andromeda galaxy , 2006, astro-ph/0607236.
[42] M. F. Physik,et al. The Wendelstein Calar Alto Pixellensing Project (WeCAPP): the M 31 variable star catalogue , 2005, astro-ph/0507419.
[43] Sean G. Ryan,et al. The Advanced Maui Optical and Space Surveillance Technologies Conference , 2006 .
[44] Walter A. Siegmund,et al. Design of the Pan‐STARRS telescopes , 2004 .
[45] Astronomy,et al. New period-luminosity and period-color relations of classical Cepheids. II. Cepheids in LMC , 2004, 0810.1780.
[46] L. Macri,et al. DIRECT Distances to Nearby Galaxies Using Detached Eclipsing Binaries and Cepheids. IX. Variables in the Field M31Y Discovered with Image Subtraction , 2003, astro-ph/0303307.
[47] Robert Jedicke,et al. Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.
[48] M. Marconi,et al. Theoretical Models for Classical Cepheids. VIII. Effects of Helium and Heavy-Element Abundance on the Cepheid Distance Scale , 2002, astro-ph/0205147.
[49] J. Tonry,et al. DIRECT Distances to Nearby Galaxies Using Detached Eclipsing Binaries and Cepheids. IV. Variables in the Field M31D , 1999 .
[50] K. Stanek,et al. DIRECT Distances to Nearby Galaxies Using Detached Eclipsing Binaries and Cepheids. V. Variables in the Field M31F , 1999 .
[51] J. Tonry,et al. DIRECT Distances to Nearby Galaxies Using Detached Eclipsing Binaries and Cepheids. III. Variables in the Field M31C , 1999 .
[52] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[53] R. Lupton,et al. A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.
[54] J. Tonry,et al. DIRECT Distances to Nearby Galaxies Using Detached Eclipsing Binaries and Cepheids. I. Variables in the Field M31B , 1997, astro-ph/9712053.
[55] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[56] Wendy L. Freedman,et al. THE CEPHEID DISTANCE SCALE , 1991 .
[57] S. Kent. Surface Photometry of Six Local Group Galaxies , 1987 .
[58] P. Stetson. DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .
[59] B. F. Madore,et al. The period-luminosity relation. IV. Intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. , 1982 .
[60] B. Madore. Additional Evidence for Reddening of Magellanic Cloud Cepheids , 1976 .