Cepheids in M31: The PAndromeda Cepheid Sample

We present the largest Cepheid sample in M31 based on the complete Pan-STARRS1 survey of Andromeda (PAndromeda) in the rP1, iP1, and gP1 bands. We find 2686 Cepheids with 1662 fundamental-mode Cepheids, 307 first-overtone Cepheids, 278 type II Cepheids, and 439 Cepheids with undetermined Cepheid type. Using the method developed by Kodric et al., we identify Cepheids by using a three-dimensional parameter space of Fourier parameters of the Cepheid light curves combined with a color cut and other selection criteria. This is an unbiased approach to identify Cepheids and results in a homogeneous Cepheid sample. The period–luminosity relations obtained for our sample have smaller dispersions than in our previous work. We find a broken slope that we previously observed with HST data in Kodric et al., albeit with a lower significance.

[1]  N. Mowlavi,et al.  On the effect of rotation on populations of classical Cepheids. I. Predictions at solar metallicity , 2014, 1403.0809.

[2]  N. N. Kireeva,et al.  General catalogue of variable stars: Version GCVS 5.1 , 2017 .

[3]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[4]  Gaia Collaboration,et al.  The Gaia mission , 2016, 1609.04153.

[5]  A. Riess,et al.  OPTICAL IDENTIFICATION OF CEPHEIDS IN 19 HOST GALAXIES OF TYPE Ia SUPERNOVAE AND NGC 4258 WITH THE HUBBLE SPACE TELESCOPE , 2016, 1607.08658.

[6]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[7]  M. Catelán,et al.  THE ARAUCARIA PROJECT: A STUDY OF THE CLASSICAL CEPHEID IN THE ECLIPSING BINARY SYSTEM OGLE LMC562.05.9009 IN THE LARGE MAGELLANIC CLOUD , 2015, 1511.02826.

[8]  E. Rykoff,et al.  On the Impact of Cepheid Outliers on the Distance Ladder , 2015, 1507.07523.

[9]  L. Girardi,et al.  PARSEC evolutionary tracks of massive stars up to 350 M ☉ at metallicities 0.0001 ≤ Z ≤ 0.04 , 2015, 1506.01681.

[10]  B. Williams,et al.  Panchromatic Hubble Andromeda Treasury XIII: The Cepheid period-luminosity relation in M31 , 2015, 1504.05118.

[11]  L. Macri,et al.  CEPHEID VARIABLES IN THE MASER-HOST GALAXY NGC 4258 , 2015, 1503.07953.

[12]  R. Bender,et al.  THE M31 NEAR-INFRARED PERIOD–LUMINOSITY RELATION AND ITS NON-LINEARITY FOR δ Cep VARIABLES WITH 0.5 ⩽ log (P) ⩽ 1.7 , 2014, 1405.5218.

[13]  L. Girardi,et al.  New PARSEC evolutionary tracks of massive stars at low metallicity: testing canonical stellar evolution in nearby star-forming dwarf galaxies , 2014, 1410.1745.

[14]  Mauro Barbieri,et al.  Improving PARSEC models for very low mass stars , 2014, 1409.0322.

[15]  G. Efstathiou H 0 revisited , 2013, 1311.3461.

[16]  R. Bender,et al.  PROPERTIES OF M31. III. CANDIDATE BEAT CEPHEIDS FROM PS1 PANDROMEDA DATA AND THEIR IMPLICATION ON METALLICITY GRADIENT , 2013, 1308.6576.

[17]  Lincoln Greenhill,et al.  TOWARD A NEW GEOMETRIC DISTANCE TO THE ACTIVE GALAXY NGC 4258. III. FINAL RESULTS AND THE HUBBLE CONSTANT , 2013, 1307.6031.

[18]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[19]  A. Garc'ia-Varela,et al.  A study on the universality and linearity of the Leavitt law in the LMC and SMC galaxies , 2013, 1303.0809.

[20]  R. Bender,et al.  PROPERTIES OF M31. II. A CEPHEID DISK SAMPLE DERIVED FROM THE FIRST YEAR OF PS1 PANDROMEDA DATA , 2013, 1301.6170.

[21]  European Southern Observatory,et al.  ON THE DISTANCE OF THE MAGELLANIC CLOUDS USING CEPHEID NIR AND OPTICAL–NIR PERIOD–WESENHEIT RELATIONS , 2012, 1212.4376.

[22]  V. Ripepi,et al.  Predicted properties of galactic and magellanic classical Cepheids in the SDSS filters , 2012, 1209.4090.

[23]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[24]  T. Lauer,et al.  THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY , 2012, 1204.0010.

[25]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[26]  A. Riess,et al.  CEPHEID PERIOD–LUMINOSITY RELATIONS IN THE NEAR-INFRARED AND THE DISTANCE TO M31 FROM THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 , 2011, 1110.3769.

[27]  J. Koppenhoefer,et al.  MDia and POTS , 2011, 1112.2121.

[28]  W. Gieren,et al.  CONCERNING THE CLASSICAL CEPHEID VIC WESENHEIT FUNCTION'S STRONG METALLICITY DEPENDENCE , 2011, 1110.1629.

[29]  T. Grav,et al.  PAndromeda—FIRST RESULTS FROM THE HIGH-CADENCE MONITORING OF M31 WITH Pan-STARRS 1 , 2011, 1109.6320.

[30]  B. Madore,et al.  TWO NEW TESTS OF THE METALLICITY SENSITIVITY OF THE CEPHEID PERIOD–LUMINOSITY RELATION (THE LEAVITT LAW) , 2011, 1103.6235.

[31]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[32]  B. Madore,et al.  The Hubble Constant , 2010, 1004.1856.

[33]  M. Marconi,et al.  INSIGHTS INTO THE CEPHEID DISTANCE SCALE , 2010, 1004.0363.

[34]  I. Ribas,et al.  The distance to the Andromeda galaxy from eclipsing binaries , 2009, 0911.3391.

[35]  S. Seitz,et al.  Properties of M31 - I. Dust. Basic properties and a discussion about age-dependent dust heating , 2009, 0907.0669.

[36]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[37]  S. Kanbur,et al.  Testing the nonlinearity of the BVIcJHKs period-luminosity relations for the Large Magellanic Cloud Cepheids , 2007, 0710.5128.

[38]  F. Vilardell,et al.  A comprehensive study of Cepheid variables in the Andromeda galaxy. Period distribution, blending, a , 2007, 0707.2965.

[39]  P. Reegen SigSpec - I. Frequency- and Phase-Resolved Significance in Fourier Space , 2007, physics/0703160.

[40]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[41]  I. Ribas,et al.  Eclipsing binaries suitable for distance determination in the Andromeda galaxy , 2006, astro-ph/0607236.

[42]  M. F. Physik,et al.  The Wendelstein Calar Alto Pixellensing Project (WeCAPP): the M 31 variable star catalogue , 2005, astro-ph/0507419.

[43]  Sean G. Ryan,et al.  The Advanced Maui Optical and Space Surveillance Technologies Conference , 2006 .

[44]  Walter A. Siegmund,et al.  Design of the Pan‐STARRS telescopes , 2004 .

[45]  Astronomy,et al.  New period-luminosity and period-color relations of classical Cepheids. II. Cepheids in LMC , 2004, 0810.1780.

[46]  L. Macri,et al.  DIRECT Distances to Nearby Galaxies Using Detached Eclipsing Binaries and Cepheids. IX. Variables in the Field M31Y Discovered with Image Subtraction , 2003, astro-ph/0303307.

[47]  Robert Jedicke,et al.  Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.

[48]  M. Marconi,et al.  Theoretical Models for Classical Cepheids. VIII. Effects of Helium and Heavy-Element Abundance on the Cepheid Distance Scale , 2002, astro-ph/0205147.

[49]  J. Tonry,et al.  DIRECT Distances to Nearby Galaxies Using Detached Eclipsing Binaries and Cepheids. IV. Variables in the Field M31D , 1999 .

[50]  K. Stanek,et al.  DIRECT Distances to Nearby Galaxies Using Detached Eclipsing Binaries and Cepheids. V. Variables in the Field M31F , 1999 .

[51]  J. Tonry,et al.  DIRECT Distances to Nearby Galaxies Using Detached Eclipsing Binaries and Cepheids. III. Variables in the Field M31C , 1999 .

[52]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[53]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[54]  J. Tonry,et al.  DIRECT Distances to Nearby Galaxies Using Detached Eclipsing Binaries and Cepheids. I. Variables in the Field M31B , 1997, astro-ph/9712053.

[55]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[56]  Wendy L. Freedman,et al.  THE CEPHEID DISTANCE SCALE , 1991 .

[57]  S. Kent Surface Photometry of Six Local Group Galaxies , 1987 .

[58]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[59]  B. F. Madore,et al.  The period-luminosity relation. IV. Intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. , 1982 .

[60]  B. Madore Additional Evidence for Reddening of Magellanic Cloud Cepheids , 1976 .