Stability analysis and a priori error estimate of explicit Runge-Kutta discontinuous Galerkin methods for correlated random walk with density-dependent turning rates

[1]  Xiangxiong Zhang,et al.  Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms , 2011, J. Comput. Phys..

[2]  Chi-Wang Shu,et al.  Stability Analysis and A Priori Error Estimates of the Third Order Explicit Runge-Kutta Discontinuous Galerkin Method for Scalar Conservation Laws , 2010, SIAM J. Numer. Anal..

[3]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[4]  T. Hillen Existence Theory for Correlated Random Walks on Bounded Domains , 2009 .

[5]  M A Lewis,et al.  Complex spatial group patterns result from different animal communication mechanisms , 2007, Proceedings of the National Academy of Sciences.

[6]  R. Eftimiea,et al.  Modeling Group Formation and Activity Patterns in Self-Organizing Collectives of Individuals , 2007 .

[7]  Chi-Wang Shu,et al.  Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws , 2004, SIAM J. Numer. Anal..

[8]  Radek Erban,et al.  From Individual to Collective Behavior in Bacterial Chemotaxis , 2004, SIAM J. Appl. Math..

[9]  F. Lutscher,et al.  Emerging Patterns in a Hyperbolic Model for Locally Interacting Cell Systems , 2003, J. Nonlinear Sci..

[10]  Frithjof Lutscher,et al.  Modeling alignment and movement of animals and cells , 2002, Journal of mathematical biology.

[11]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[12]  Thomas Hillen,et al.  Hyperbolic models for chemotaxis in 1-D , 2000 .

[13]  Karl Peter Hadeler,et al.  Mathematics Inspired by Biology , 2000 .

[14]  K. P. Hadeler,et al.  Reaction transport equations in biological modeling , 2000 .

[15]  K. P. Hadeler,et al.  Reaction transport systems in biological modelling , 1999 .

[16]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[17]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[18]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[19]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[20]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[21]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[22]  M. Kac A stochastic model related to the telegrapher's equation , 1974 .

[23]  H. Hasimoto Exact Solution of a Certain Semi-Linear System of Partial Differential Equations related to a Migrating Predation Problem , 1974 .

[24]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[25]  S. Goldstein ON DIFFUSION BY DISCONTINUOUS MOVEMENTS, AND ON THE TELEGRAPH EQUATION , 1951 .