Review of Label-Free Monitoring of Bacteria: From Challenging Practical Applications to Basic Research Perspectives

Novel biosensors already provide a fast way to detect the adhesion of whole bacteria (or parts of them), biofilm formation, and the effect of antibiotics. Moreover, the detection sensitivities of recent sensor technologies are large enough to investigate molecular-scale biological processes. Usually, these measurements can be performed in real time without using labeling. Despite these excellent capabilities summarized in the present work, the application of novel, label-free sensor technologies in basic biological research is still rare; the literature is dominated by heuristic work, mostly monitoring the presence and amount of a given analyte. The aims of this review are (i) to give an overview of the present status of label-free biosensors in bacteria monitoring, and (ii) to summarize potential novel directions with biological relevancies to initiate future development. Optical, mechanical, and electrical sensing technologies are all discussed with their detailed capabilities in bacteria monitoring. In order to review potential future applications of the outlined techniques in bacteria research, we summarize the most important kinetic processes relevant to the adhesion and survival of bacterial cells. These processes are potential targets of kinetic investigations employing modern label-free technologies in order to reveal new fundamental aspects. Resistance to antibacterials and to other antimicrobial agents, the most important biological mechanisms in bacterial adhesion and strategies to control adhesion, as well as bacteria-mammalian host cell interactions are all discussed with key relevancies to the future development and applications of biosensors.

[1]  T. Gerecsei,et al.  Development and In-Depth Characterization of Bacteria Repellent and Bacteria Adhesive Antibody-Coated Surfaces Using Optical Waveguide Biosensing , 2022, Biosensors.

[2]  Yan Liang,et al.  Development of a whole-cell biosensor for detection of antibiotics targeting bacterial cell envelope in Bacillus subtilis , 2022, Applied Microbiology and Biotechnology.

[3]  C. Ciminelli,et al.  Novel Micro-Nano Optoelectronic Biosensor for Label-Free Real-Time Biofilm Monitoring , 2021, Biosensors.

[4]  H. J. Wagner,et al.  Biosensor‐Enabled Multiplexed On‐Site Therapeutic Drug Monitoring of Antibiotics , 2021, Advanced materials.

[5]  B. Péter,et al.  Label-free real-time monitoring of the BCR-triggered activation of primary human B cells modulated by the simultaneous engagement of inhibitory receptors. , 2021, Biosensors & bioelectronics.

[6]  Jianrong Li,et al.  Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles. , 2021, ACS biomaterials science & engineering.

[7]  J. Popp,et al.  Low-cost colorimetric diagnostic screening assay for methicillin resistant Staphylococcus aureus. , 2021, Talanta.

[8]  G. Hwang,et al.  Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion , 2021, Frontiers in Bioengineering and Biotechnology.

[9]  B. Péter,et al.  Glycocalyx regulates the strength and kinetics of cancer cell adhesion revealed by biophysical models based on high resolution label-free optical data , 2020, Scientific Reports.

[10]  Haiyang Jiang,et al.  Rapid and ultrasensitive detection of Salmonella typhimurium using a novel impedance biosensor based on SiO2@MnO2 nanocomposites and interdigitated array microelectrodes , 2020 .

[11]  Li Xue,et al.  An impedance biosensor based on magnetic nanobead net and MnO2 nanoflowers for rapid and sensitive detection of foodborne bacteria. , 2020, Biosensors & bioelectronics.

[12]  M. Zeinoddini,et al.  Immunodiagnostic of Vibrio cholerae O1 using localized surface plasmon resonance (LSPR) biosensor , 2020, International Microbiology.

[13]  M. Z. Khan,et al.  Recent Biosensors for Detection of Antibiotics in Animal Derived Food , 2020, Critical reviews in analytical chemistry.

[14]  Laura M Lechuga,et al.  Ultrasensitive Label-Free Detection of Unamplified Multidrug-Resistance Bacteria Genes with a Bimodal Waveguide Interferometric Biosensor , 2020, Diagnostics.

[15]  A. Shafiekhani,et al.  A lectin-coupled porous silicon-based biosensor: label-free optical detection of bacteria in a real-time mode , 2020, Scientific Reports.

[16]  P. Speziale,et al.  The Multivalent Role of Fibronectin-Binding Proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in Host Infections , 2020, Frontiers in Microbiology.

[17]  F. He,et al.  Electrochemical biosensor for rapid detection of bacteria based on facile synthesis of silver wire across electrodes. , 2020, Biosensors & bioelectronics.

[18]  Eun-Kyung Lim,et al.  Peptidoglycan-binding Protein Metamaterials Mediated Enhanced and Selective Capturing of Gram-Positive Bacteria and their Specific, Ultra-sensitive, and Reproducible detection via SERS. , 2020, ACS sensors.

[19]  M. Zourob,et al.  Ultrasensitive peptide-based multiplexed electrochemical biosensor for the simultaneous detection of Listeria monocytogenes and Staphylococcus aureus , 2020, Microchimica Acta.

[20]  Hermann F. Sussitz,et al.  Molecular Imprinted Based Quartz Crystal Microbalance Sensors for Bacteria and Spores , 2020, Chemosensors.

[21]  Wentao Xu,et al.  Ultrasensitive magnetic DNAzyme-copper nanoclusters fluorescent biosensor with triple amplification for the visual detection of E. coli O157:H7. , 2020, Biosensors & bioelectronics.

[22]  T. Mascher,et al.  Development of a novel heterologous β-lactam-specific whole-cell biosensor in Bacillus subtilis , 2020, Journal of Biological Engineering.

[23]  Chankyu Park,et al.  Developing a toll-like receptor biosensor for Gram-positive bacterial detection and its storage strategies. , 2020, The Analyst.

[24]  Tianxiao Yu,et al.  Aptamer based high throughput colorimetric biosensor for detection of staphylococcus aureus , 2020, Scientific Reports.

[25]  S. Mukherji,et al.  Beta-lactam antibiotics induced bacteriolysis on LSPR sensors for assessment of antimicrobial resistance and quantification of antibiotics , 2020 .

[26]  Wensen Liu,et al.  An electrochemical biosensor based on methylene blue-loaded nanocomposites as signal-amplifying tags to detect pathogenic bacteria. , 2020, The Analyst.

[27]  Lei Wang,et al.  Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. , 2020, Talanta.

[28]  Gaser N. Abdelrasoul,et al.  DNA aptamer-based non-faradaic impedance biosensor for detecting E. coli. , 2020, Analytica chimica acta.

[29]  A. Azizi,et al.  Design of Localized Surface Plasmon Resonance (LSPR) Biosensor for Immunodiagnostic of E. coli O157:H7 Using Gold Nanoparticles Conjugated to the Chicken Antibody , 2020, Plasmonics.

[30]  A. Koca,et al.  An alternative strategy to detect bacterial contamination in milk and water: a newly designed electrochemical biosensor , 2020, European Food Research and Technology.

[31]  Lingli Zhu,et al.  Interfacial engineering of graphenic carbon electrodes by antimicrobial polyhexamethylene guanidine hydrochloride for ultrasensitive bacterial detection , 2020 .

[32]  M. Calleja,et al.  Optomechanical detection of vibration modes of a single bacterium , 2020, Nature Nanotechnology.

[33]  M. Amjad An Overview of the Molecular Methods in the Diagnosis of Gastrointestinal Infectious Diseases , 2020, International journal of microbiology.

[34]  Shenqi Wang,et al.  High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. , 2020, Biosensors & bioelectronics.

[35]  P. Yupapin,et al.  BaTiO3-Graphene-Affinity Layer–Based Surface Plasmon Resonance (SPR) Biosensor for Pseudomonas Bacterial Detection , 2020, Plasmonics.

[36]  J. Ortiz-Marquez,et al.  Dielectrophoresis assisted rapid, selective and single cell detection of antibiotic resistant bacteria with G-FETs. , 2020, Biosensors & bioelectronics.

[37]  Jiao Hu,et al.  Rapid screening and quantitative detection of Salmonella using a quantum dot nanobead-based biosensor. , 2020, The Analyst.

[38]  Li Li,et al.  A Self-Calibrating Surface-Enhanced Raman Scattering-Active System for Bacterial Phenotype Detection. , 2020, Analytical chemistry.

[39]  Hui Yu,et al.  Electrochemical Impedance Spectroscopic Detection of E.coli with Machine Learning , 2020 .

[40]  Longhua Tang,et al.  Gold nanobones enhanced ultrasensitive SERS aptasensor for detecting Escherichia coli O157:H7. , 2020, ACS sensors.

[41]  Naresh Kumar,et al.  Rapid Detection of Listeria monocytogenes in Milk by Surface Plasmon Resonance Using Wheat Germ Agglutinin , 2020, Food Analytical Methods.

[42]  Yanbin Li,et al.  Combining impedance biosensor with immunomagnetic separation for rapid screening of Salmonella in poultry supply chains , 2020, Poultry science.

[43]  Y. Dufrêne,et al.  Mechanomicrobiology: how bacteria sense and respond to forces , 2020, Nature Reviews Microbiology.

[44]  O. Prakash,et al.  Direct Detection of Bacteria Using Positively Charged Ag/Au Bimetallic Nanoparticles: A Label-free Surface-Enhanced Raman Scattering Study Coupled with Multivariate Analysis , 2020 .

[45]  J. Popp,et al.  Rapid Colorimetric Detection of Pseudomonas aeruginosa in Clinical Isolates Using a Magnetic Nanoparticle Biosensor , 2019, ACS omega.

[46]  Monika Tomar,et al.  Label-free amperometric biosensor for Escherichia coli O157:H7 detection , 2019, Applied Surface Science.

[47]  J. Malmström,et al.  Interaction with the host: the role of fibronectin and extracellular matrix proteins in the adhesion of Gram-negative bacteria , 2019, Medical Microbiology and Immunology.

[48]  A. B. González-Guerrero,et al.  Label-free detection of nosocomial bacteria using a nanophotonic interferometric biosensor. , 2019, The Analyst.

[49]  P. Georgiou,et al.  Microneedle biosensors for real-time, minimally invasive drug monitoring of phenoxymethylpenicillin: a first-in-human evaluation in healthy volunteers. , 2019, The Lancet. Digital health.

[50]  A. Cuervo,et al.  Nanomechanical detection of Escherichia coli infection by bacteriophage T7 using cantilever sensors. , 2019, Nanoscale.

[51]  R. Boukherroub,et al.  Mucin modified SPR interfaces for studying the effect of flow on pathogen binding to Atlantic salmon mucins. , 2019, Biosensors & bioelectronics.

[52]  Nádia F D Silva,et al.  Development of a disposable paper-based potentiometric immunosensor for real-time detection of a foodborne pathogen. , 2019, Biosensors & bioelectronics.

[53]  K. Kellner,et al.  A Sensitive Voltammetric Biosensor for Escherichia Coli Detection Using an Electroactive Substrate for $\beta$ -D-Glucuronidase , 2019, IEEE Sensors Journal.

[54]  Amanda L. Wolfe,et al.  Development of a Robust and Quantitative High-Throughput Screening Method for Antibiotic Production in Bacterial Libraries , 2019, ACS omega.

[55]  G. Bayramoglu,et al.  Rapid and label-free detection of Brucella melitensis in milk and milk products using an aptasensor. , 2019, Talanta.

[56]  D. H. Nguyen,et al.  Stable Electrochemical Measurements of Platinum Screen-Printed Electrodes Modified with Vertical ZnO Nanorods for Bacterial Detection , 2019, Journal of Nanomaterials.

[57]  M. Delville,et al.  Silica nanoparticles-assisted electrochemical biosensor for the rapid, sensitive and specific detection of Escherichia coli , 2019, Sensors and Actuators B: Chemical.

[58]  Jinling Yang,et al.  Enhanced Binding Efficiency of Microcantilever Biosensor for the Detection of Yersinia , 2019, Sensors.

[59]  M. Pohanka QCM immunosensor for the determination of Staphylococcus aureus antigen , 2019, Chemical Papers.

[60]  R. Bridgman,et al.  Detection of Salmonella Typhimurium in Romaine Lettuce Using a Surface Plasmon Resonance Biosensor , 2019, Biosensors.

[61]  Yeşeren Saylan,et al.  Detecting Fingerprints of Waterborne Bacteria on a Sensor , 2019, Chemosensors.

[62]  W. Lim,et al.  Novel surface plasmon resonance biosensor that uses full-length Det7 phage tail protein for rapid and selective detection of Salmonella enterica serovar Typhimurium , 2019, bioRxiv.

[63]  I. Autenrieth,et al.  Bacterial adhesion and host cell factors leading to effector protein injection by type III secretion system. , 2019, International journal of medical microbiology : IJMM.

[64]  Y. Lim,et al.  A fluorescent supramolecular biosensor for bacterial detection via binding-induced changes in coiled-coil molecular assembly , 2019, Sensors and Actuators B: Chemical.

[65]  F. Rawson,et al.  Real-time bacterial detection with an intracellular ROS sensing platform. , 2019, Biosensors & bioelectronics.

[66]  T. Krauss,et al.  Monitoring of individual bacteria using electro-photonic traps. , 2019, Biomedical optics express.

[67]  A. K. Pinnaka,et al.  Glycoconjugates coated gold nanorods based novel biosensor for optical detection and photothermal ablation of food borne bacteria , 2019, Sensors and Actuators B: Chemical.

[68]  W. Vollmer,et al.  Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen , 2019, FEMS microbiology reviews.

[69]  P. Neužil,et al.  DEP-on-a-Chip: Dielectrophoresis Applied to Microfluidic Platforms , 2019, Micromachines.

[70]  Rafał Kolenda,et al.  Everything You Always Wanted to Know About Salmonella Type 1 Fimbriae, but Were Afraid to Ask , 2019, Front. Microbiol..

[71]  T. Livache,et al.  Early detection of bacteria using SPR imaging and event counting: experiments with Listeria monocytogenes and Listeria innocua , 2019, RSC advances.

[72]  Nan Liu,et al.  Simultaneous and Ultrasensitive Detection of Foodborne Bacteria by Gold Nanoparticles-Amplified Microcantilever Array Biosensor , 2019, Front. Chem..

[73]  G. Jungersen,et al.  Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies , 2019, Journal of immunology research.

[74]  Tigecycline , 2019, Reactions Weekly.

[75]  Nádia F D Silva,et al.  In situ formation of gold nanoparticles in polymer inclusion membrane: Application as platform in a label-free potentiometric immunosensor for Salmonella typhimurium detection. , 2019, Talanta.

[76]  Carmen I. Moraru,et al.  Micro- and Nanotopography Sensitive Bacterial Attachment Mechanisms: A Review , 2019, Front. Microbiol..

[77]  M. Almasri,et al.  An impedance biosensor for simultaneous detection of low concentration of Salmonella serogroups in poultry and fresh produce samples. , 2019, Biosensors & bioelectronics.

[78]  Weiling Fu,et al.  Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles , 2019, Microchimica Acta.

[79]  A. Mulchandani,et al.  Electrochemical Biosensor for Rapid Detection of Viable Bacteria and Antibiotic Screening , 2019, Journal of Analysis and Testing.

[80]  R. Rappuoli,et al.  Technologies to address antimicrobial resistance , 2018, Proceedings of the National Academy of Sciences.

[81]  M. Almasri,et al.  Microfluidic based impedance biosensor for pathogens detection in food products , 2018, Electrophoresis.

[82]  P. Skládal,et al.  Cyclopropylamine plasma polymer surfaces for label-free SPR and QCM immunosensing of Salmonella , 2018, Sensors and Actuators B: Chemical.

[83]  M. Almasri,et al.  Low concentration E. coli O157:H7 bacteria sensing using microfluidic MEMS biosensor. , 2018, The Review of scientific instruments.

[84]  K. Holt,et al.  Diversity-Generating Machines: Genetics of Bacterial Sugar-Coating , 2018, Trends in microbiology.

[85]  Qiuming Yu,et al.  Sensitive Bacterial Detection via Dielectrophoretic-Enhanced Mass Transport Using Surface-Plasmon-Resonance Biosensors. , 2018, Analytical chemistry.

[86]  On Shun Pak,et al.  A Rapid and Low-Cost Pathogen Detection Platform by Using a Molecular Agglutination Assay , 2018, ACS central science.

[87]  Anil Kumar,et al.  Zinc oxide, gold and graphene-based surface plasmon resonance (SPR) biosensor for detection of pseudomonas like bacteria: A comparative study , 2018, Optik.

[88]  R. Velotta,et al.  QCM-based immunosensor for rapid detection of Salmonella Typhimurium in food , 2018, Scientific Reports.

[89]  Yixiang Duan,et al.  Ω-Shaped Fiber-Optic Probe-Based Localized Surface Plasmon Resonance Biosensor for Real-Time Detection of Salmonella Typhimurium. , 2018, Analytical chemistry.

[90]  E. Rossi,et al.  Biofilm and motility in response to environmental and host‐related signals in Gram negative opportunistic pathogens , 2018, Journal of applied microbiology.

[91]  Chen Zhou,et al.  Fiber optic surface plasmon resonance sensor for detection of E. coli O157:H7 based on antimicrobial peptides and AgNPs-rGO. , 2018, Biosensors & bioelectronics.

[92]  Yingfu Li,et al.  Graphene-DNAzyme-based fluorescent biosensor for Escherichia coli detection , 2018 .

[93]  B. Péter,et al.  Interaction of Positively Charged Gold Nanoparticles with Cancer Cells Monitored by an in Situ Label-Free Optical Biosensor and Transmission Electron Microscopy. , 2018, ACS applied materials & interfaces.

[94]  W. Vollmer,et al.  Mechanical interactions between bacteria and hydrogels , 2018, Scientific Reports.

[95]  Pu Zhang,et al.  Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a nanohybrid material composed of reduced graphene oxide and a metal-organic framework , 2018, Microchimica Acta.

[96]  Y. Brun,et al.  Bacterial adhesion at the single-cell level , 2018, Nature Reviews Microbiology.

[97]  Huilin Zhang,et al.  An ultrasensitive fluorescent biosensor using high gradient magnetic separation and quantum dots for fast detection of foodborne pathogenic bacteria , 2018, Sensors and Actuators B: Chemical.

[98]  Mirella Di Lorenzo,et al.  Impedimetric paper-based biosensor for the detection of bacterial contamination in water , 2018, Sensors and Actuators B: Chemical.

[99]  M. Paulsson,et al.  How bacteria hack the matrix and dodge the bullets of immunity , 2018, European Respiratory Review.

[100]  W. Lim,et al.  Rapid label-free detection of E. coli using a novel SPR biosensor containing a fragment of tail protein from phage lambda , 2018, Preparative biochemistry & biotechnology.

[101]  T. Ciach,et al.  Detection of tuberculosis in patients with the use of portable SPR device , 2018 .

[102]  Robert Horvath,et al.  High-Resolution Adhesion Kinetics of EGCG-Exposed Tumor Cells on Biomimetic Interfaces: Comparative Monitoring of Cell Viability Using Label-Free Biosensor and Classic End-Point Assays , 2018, ACS omega.

[103]  J. Enninga,et al.  The entry of Salmonella in a distinct tight compartment revealed at high temporal and ultrastructural resolution , 2018, Cellular microbiology.

[104]  Maohua Wang,et al.  An optical biosensor using immunomagnetic separation, urease catalysis and pH indication for rapid and sensitive detection of Listeria monocytogenes , 2018 .

[105]  Robert Horvath,et al.  Bacteria repellent layer made of flagellin , 2018 .

[106]  Y. K. Prajapati,et al.  Effect of Molybdenum Disulfide Layer on Surface Plasmon Resonance Biosensor for the Detection of Bacteria , 2018, Silicon.

[107]  Peter Lieberzeit,et al.  QCM-based rapid detection of PCR amplification products of Ehrlichia canis. , 2018, Analytica chimica acta.

[108]  C. Moraru,et al.  Long-range interactions keep bacterial cells from liquid-solid interfaces: Evidence of a bacteria exclusion zone near Nafion surfaces and possible implications for bacterial attachment. , 2018, Colloids and surfaces. B, Biointerfaces.

[109]  Ronghui Wang,et al.  Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor. , 2018, Journal of biotechnology.

[110]  Xue Yang,et al.  An ultrasensitive electrochemical biosensor for the detection of mecA gene in methicillin-resistant Staphylococcus aureus. , 2018, Biosensors & bioelectronics.

[111]  Yang Liu,et al.  Three-Dimensional Nanoprinting via Direct Delivery. , 2017, The journal of physical chemistry. B.

[112]  E. Uribe-Querol,et al.  Control of Phagocytosis by Microbial Pathogens , 2017, Front. Immunol..

[113]  P. Ashburn,et al.  Ultra-fast electronic detection of antimicrobial resistance genes using isothermal amplification and Thin Film Transistor sensors. , 2017, Biosensors & bioelectronics.

[114]  D. Barh,et al.  Two-Component Signal Transduction Systems of Pathogenic Bacteria As Targets for Antimicrobial Therapy: An Overview , 2017, Front. Microbiol..

[115]  T. Miyamoto,et al.  Simultaneous Detection of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes at a Very Low Level Using Simultaneous Enrichment Broth and Multichannel SPR Biosensor. , 2017, Journal of food science.

[116]  R. Taheri,et al.  Evaluating the Potential of an Antibody Against Recombinant OmpW Antigen in Detection of Vibrio cholerae by Surface Plasmon Resonance (SPR) Biosensor , 2017, Plasmonics.

[117]  Pooja Sabhachandani,et al.  Integrated microfluidic platform for rapid antimicrobial susceptibility testing and bacterial growth analysis using bead-based biosensor via fluorescence imaging , 2017, Microchimica Acta.

[118]  W. Bentley,et al.  An Integrated Microsystem for Real-Time Detection and Threshold-Activated Treatment of Bacterial Biofilms. , 2017, ACS applied materials & interfaces.

[119]  A. Turner,et al.  Electrochemical bacterial detection using poly(3-aminophenylboronic acid)-based imprinted polymer. , 2017, Biosensors & bioelectronics.

[120]  Rui Li,et al.  Dynamic monitoring of antimicrobial resistance using magnesium zinc oxide nanostructure-modified quartz crystal microbalance. , 2017, Biosensors & bioelectronics.

[121]  J. Ramsden Can bacteria develop resistance to photocatalytically generated reactive oxygen species , 2017 .

[122]  Mohammed Zourob,et al.  Paper-based magnetic nanoparticle-peptide probe for rapid and quantitative colorimetric detection of Escherichia coli O157:H7. , 2017, Biosensors & bioelectronics.

[123]  R. Galatus,et al.  Magnetic Nanoparticles for Antibiotics Detection , 2017, Nanomaterials.

[124]  Ester Segal,et al.  Unraveling Antimicrobial Susceptibility of Bacterial Networks on Micropillar Architectures Using Intrinsic Phase-Shift Spectroscopy. , 2017, ACS nano.

[125]  M. Kutateladze Diversity of Phage-Host Specificity in Brucella Phage , 2017 .

[126]  Ji-Young Ahn,et al.  Detecting and Discriminating Shigella sonnei Using an Aptamer-Based Fluorescent Biosensor Platform , 2017, Molecules.

[127]  Yibin Ying,et al.  In-field detection of multiple pathogenic bacteria in food products using a portable fluorescent biosensing system , 2017 .

[128]  H. Jeong,et al.  Development of real-time and quantitative QCM immunosensor for the rapid diagnosis of Aeromonas hydrophila infection , 2017 .

[129]  J. J. Ramsden,et al.  Can smart sensor systems save the NHS , 2017 .

[130]  Ronghui Wang,et al.  QCM-based aptamer selection and detection of Salmonella typhimurium. , 2017, Food chemistry.

[131]  Mohammed Zourob,et al.  Rapid and low-cost biosensor for the detection of Staphylococcus aureus. , 2017, Biosensors & bioelectronics.

[132]  B. Finlay,et al.  Assembly, structure, function and regulation of type III secretion systems , 2017, Nature Reviews Microbiology.

[133]  B. Péter,et al.  Label-free optical biosensor for on-line monitoring the integrated response of human B cells upon the engagement of stimulatory and inhibitory immune receptors , 2017 .

[134]  Robert Horvath,et al.  Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically , 2017, Scientific Reports.

[135]  J. Orozco,et al.  Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae. , 2017, Biosensors & bioelectronics.

[136]  Mohammed Zourob,et al.  Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen. , 2016, Biosensors & bioelectronics.

[137]  H. Flemming EPS—Then and Now , 2016, Microorganisms.

[138]  Emmanuel Picard,et al.  Single-cell bacterium identification with a SOI optical microcavity , 2016 .

[139]  P. Glenn Gulak,et al.  Rapid Bacterial Detection via an All-Electronic CMOS Biosensor , 2016, PloS one.

[140]  M. Desmulliez,et al.  Carbon screen‐printed electrodes on ceramic substrates for label‐free molecular detection of antibiotic resistance , 2016 .

[141]  Gerald Urban,et al.  Multianalyte Antibiotic Detection on an Electrochemical Microfluidic Platform. , 2016, Analytical chemistry.

[142]  P. Cossart,et al.  Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia , 2016, Seminars in cell & developmental biology.

[143]  J. Švitel,et al.  Optical biosensors , 2016, Essays in biochemistry.

[144]  R. O'Kennedy,et al.  Antibodies and antibody-derived analytical biosensors , 2016, Essays in biochemistry.

[145]  J. Tkáč,et al.  Glycan and lectin biosensors , 2016, Essays in biochemistry.

[146]  J. Mrázek,et al.  Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. , 2016, Biosensors & bioelectronics.

[147]  Douglas B. Litwin,et al.  Beyond Blood Culture and Gram Stain Analysis: A Review of Molecular Techniques for the Early Detection of Bacteremia in Surgical Patients. , 2016, Surgical infections.

[148]  Zeynep Altintas,et al.  Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor. , 2016, Biosensors & bioelectronics.

[149]  S. Girardin,et al.  Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes , 2016, Front. Cell. Infect. Microbiol..

[150]  J. Samuel,et al.  Contrasting Lifestyles Within the Host Cell , 2016, Microbiology spectrum.

[151]  C. Hung,et al.  The roles of the virulence factor IpaB in Shigella spp. in the escape from immune cells and invasion of epithelial cells. , 2015, Microbiological research.

[152]  J. Ramsden Photocatalytic antimicrobial coatings , 2015 .

[153]  A. Grudniak,et al.  Genetic control of bacterial biofilms , 2015, Journal of Applied Genetics.

[154]  Robert Horvath,et al.  Incubator proof miniaturized Holomonitor to in situ monitor cancer cells exposed to green tea polyphenol and preosteoblast cells adhering on nanostructured titanate surfaces: validity of the measured parameters and their corrections , 2015, Journal of biomedical optics.

[155]  Helen L Birch,et al.  The Mycobacterial Cell Wall--Peptidoglycan and Arabinogalactan. , 2015, Cold Spring Harbor perspectives in medicine.

[156]  P. Cossart,et al.  How bacterial pathogens colonize their hosts and invade deeper tissues. , 2015, Microbes and infection.

[157]  D. Linke,et al.  The inverse autotransporter family: intimin, invasin and related proteins. , 2015, International journal of medical microbiology : IJMM.

[158]  Jo V. Rushworth,et al.  Biosensors for Whole-Cell Bacterial Detection , 2014, Clinical Microbiology Reviews.

[159]  R. Linhardt,et al.  Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. , 2014, FEMS microbiology reviews.

[160]  Robert Langer,et al.  Modelling and Prediction of Bacterial Attachment to Polymers , 2014 .

[161]  Teodor Veres,et al.  Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging. , 2014, Biosensors & bioelectronics.

[162]  Vitaly Vodyanoy,et al.  Bacteriophage biosensors for antibiotic-resistant bacteria , 2014, Expert review of medical devices.

[163]  Jing-Ren Zhang,et al.  Molecular basis of host specificity in human pathogenic bacteria , 2014, Emerging Microbes & Infections.

[164]  Timothy J. Foster,et al.  Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus , 2013, Nature Reviews Microbiology.

[165]  F. Fang,et al.  Host specificity of bacterial pathogens. , 2013, Cold Spring Harbor perspectives in medicine.

[166]  Thijs van Leest,et al.  Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal. , 2013, Lab on a chip.

[167]  I. Tothill,et al.  Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. , 2013, Talanta.

[168]  Julia Baudart,et al.  Colorimetric and electrochemical genosensors for the detection of Escherichia coli DNA without amplification in seawater. , 2013, Talanta.

[169]  R. Mutharasan,et al.  Rapid and sensitive immunodetection of Listeria monocytogenes in milk using a novel piezoelectric cantilever sensor. , 2013, Biosensors & bioelectronics.

[170]  K. Carroll,et al.  Diagnosis of Clostridium difficile Infection: an Ongoing Conundrum for Clinicians and for Clinical Laboratories , 2013, Clinical Microbiology Reviews.

[171]  N. Adànyi,et al.  Bacterial sensors based on biosilica immobilization for label-free OWLS detection. , 2013, New biotechnology.

[172]  E. Olsen,et al.  Biosensor for detection of antibiotic resistant Staphylococcus bacteria. , 2013, Journal of visualized experiments : JoVE.

[173]  E. Alocilja,et al.  PCR-less DNA co-polymerization detection of Shiga like toxin 1 (stx1) in Escherichia coli O157:H7. , 2013, Biosensors & bioelectronics.

[174]  S. Hultgren,et al.  Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. , 2013, Cold Spring Harbor perspectives in medicine.

[175]  Yulia V Gerasimova,et al.  Detection of bacterial 16S rRNA using a molecular beacon-based X sensor. , 2013, Biosensors & bioelectronics.

[176]  K. Erdélyi,et al.  Biosilica-based immobilization strategy for label-free OWLS sensors , 2013 .

[177]  Amit Singh,et al.  Recent Advances in Bacteriophage Based Biosensors for Food-Borne Pathogen Detection , 2013, Sensors.

[178]  Yuh‐Lin Wang Functionalized arrays of raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood , 2012, 2012 Asia Communications and Photonics Conference (ACP).

[179]  A. Okoh,et al.  Bacterial Exopolysaccharides: Functionality and Prospects , 2012, International journal of molecular sciences.

[180]  C. Hauck,et al.  Exploitation of integrin function by pathogenic microbes. , 2012, Current opinion in cell biology.

[181]  B. Chin,et al.  Detection and identification of methicillin resistant and sensitive strains of Staphylococcus aureus using tandem measurements. , 2012, Journal of microbiological methods.

[182]  Robert Langer,et al.  Combinatorial discovery of polymers resistant to bacterial attachment , 2012, Nature Biotechnology.

[183]  U. Tamer,et al.  Comparison of sensing strategies in SPR biosensor for rapid and sensitive enumeration of bacteria. , 2012, Biosensors & bioelectronics.

[184]  Rebecca A. Belisle,et al.  Liquid-infused structured surfaces with exceptional anti-biofouling performance , 2012, Proceedings of the National Academy of Sciences.

[185]  Amanda C. Engler,et al.  Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections , 2012 .

[186]  Anant Kumar Singh,et al.  Nanomaterials for targeted detection and photothermal killing of bacteria. , 2012, Chemical Society reviews.

[187]  Hongbo Zeng,et al.  The effects of biofilm on the transport of stabilized zerovalent iron nanoparticles in saturated porous media. , 2012, Water research.

[188]  Manuel T. Silva Classical Labeling of Bacterial Pathogens According to Their Lifestyle in the Host: Inconsistencies and Alternatives , 2012, Front. Microbio..

[189]  H. C. van der Mei,et al.  How Do Bacteria Know They Are on a Surface and Regulate Their Response to an Adhering State? , 2012, PLoS pathogens.

[190]  Katrin Reder-Christ,et al.  Biosensor Applications in the Field of Antibiotic Research—A Review of Recent Developments , 2011, Sensors.

[191]  Barbaros Çetin,et al.  Dielectrophoresis in microfluidics technology , 2011, Electrophoresis.

[192]  H. Vogel,et al.  The expanding scope of antimicrobial peptide structures and their modes of action. , 2011, Trends in biotechnology.

[193]  A. Pollard,et al.  Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. , 2011, FEMS microbiology reviews.

[194]  Yangfang Ye,et al.  Effect of C/N ratio on extracellular polymeric substances (EPS) and physicochemical properties of activated sludge flocs. , 2011, Journal of hazardous materials.

[195]  Jorge Martins,et al.  Development of a highly sensitive bacteria detection assay using fluorescent pH-responsive polymeric micelles. , 2011, Biosensors & bioelectronics.

[196]  T. McMeekin,et al.  Stochasticity of Bacterial Attachment and Its Predictability by the Extended Derjaguin-Landau-Verwey-Overbeek Theory , 2011, Applied and Environmental Microbiology.

[197]  H. Seifert,et al.  Interactions with Host Cells Causes Neisseria meningitidis Pili to Become Unglued , 2011, Front. Microbio..

[198]  Tanapon Phenrat,et al.  Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. , 2010, Journal of environmental quality.

[199]  P. Fey Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections? , 2010, Current opinion in microbiology.

[200]  Ángel Maquieira,et al.  Fast screening methods to detect antibiotic residues in food samples , 2010 .

[201]  N. Woodford,et al.  Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study , 2010, The Lancet. Infectious diseases.

[202]  J. Ramsden,et al.  Quantification of the number of adsorbed bacteria on an optical waveguide , 2010 .

[203]  Shinya Matsumoto,et al.  Bacterial adhesion: From mechanism to control , 2010 .

[204]  G. Tew,et al.  Synthetic mimics of antimicrobial peptides--a versatile ring-opening metathesis polymerization based platform for the synthesis of selective antibacterial and cell-penetrating polymers. , 2009, Chemistry.

[205]  Sang Kyu Kim,et al.  Ion-Sensitive Field-Effect Transistor for Biological Sensing , 2009, Sensors.

[206]  Xianming Shi,et al.  Biofilm formation and food safety in food industries , 2009 .

[207]  Bosoon Park,et al.  Limitation of a localized surface plasmon resonance sensor for Salmonella detection , 2009 .

[208]  R. Horváth,et al.  Optical biosensors for cell adhesion , 2009, Journal of receptor and signal transduction research.

[209]  Ivan P. Parkin,et al.  Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections , 2009 .

[210]  A. Baldi,et al.  Selective detection of live pathogens via surface-confined electric field perturbation on interdigitated silicon transducers. , 2009, Analytical chemistry.

[211]  P. Sansonetti,et al.  Life on the inside: the intracellular lifestyle of cytosolic bacteria , 2009, Nature Reviews Microbiology.

[212]  Jyrki Heino,et al.  Cellular receptors of extracellular matrix molecules. , 2009, Current pharmaceutical design.

[213]  E. Baker,et al.  Pili in Gram-negative and Gram-positive bacteria — structure, assembly and their role in disease , 2009, Cellular and Molecular Life Sciences.

[214]  R. Horváth,et al.  Multidepth screening of living cells using optical waveguides. , 2008, Biosensors & bioelectronics.

[215]  E. Olsen,et al.  Real-time optical detection of methicillin-resistant Staphylococcus aureus using lytic phage probes. , 2008, Biosensors & bioelectronics.

[216]  I. Barák,et al.  Role of structural variations of polysaccharide antigens in the pathogenicity of Gram-negative bacteria. , 2008, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[217]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[218]  W. Graninger,et al.  Daptomycin: A Review 4 Years after First Approval , 2007, Pharmacology.

[219]  M. Zourob,et al.  Integrated Deep-Probe Optical Waveguides for Label Free Bacterial Detection , 2007, 2007 International Symposium on Signals, Systems and Electronics.

[220]  R. Horváth,et al.  Quasi-isotropic analysis of anisotropic thin films on optical waveguides. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[221]  Xiaojing Ye,et al.  The integrins , 2007, Genome Biology.

[222]  Gerard D. Wright The antibiotic resistome: the nexus of chemical and genetic diversity , 2007, Nature Reviews Microbiology.

[223]  H. C. Pedersen,et al.  Deep-probe metal-clad waveguide biosensors. , 2007, Biosensors & bioelectronics.

[224]  J. J. Grote,et al.  Demonstration of bacterial cells and glycocalyx in biofilms on human tonsils. , 2007, Archives of otolaryngology--head & neck surgery.

[225]  Raj Mutharasan,et al.  A method of measuring Escherichia coli 0157:H7 at 1 cell/mL in 1 liter sample using antibody functionalized piezoelectric-excited millimeter-sized cantilever sensor. , 2007, Environmental science & technology.

[226]  M. Váradi,et al.  Application of electrochemical optical waveguide lightmode spectroscopy for studying the effect of different stress factors on lactic acid bacteria. , 2006, Analytica chimica acta.

[227]  K. Zhao,et al.  Dielectric properties of E. coli cell as simulated by the three-shell spheroidal model. , 2006, Biophysical chemistry.

[228]  C. Hauck,et al.  Cellular adhesion molecules as targets for bacterial infection. , 2006, European journal of cell biology.

[229]  T. Heise,et al.  Identification of a domain in Yersinia virulence factor YadA that is crucial for extracellular matrix-specific cell adhesion and uptake. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[230]  P. Cossart,et al.  Bacterial Adhesion and Entry into Host Cells , 2006, Cell.

[231]  T. F. Smith,et al.  Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing , 2006, Clinical Microbiology Reviews.

[232]  M. Zourob,et al.  An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria. , 2005, Lab on a chip.

[233]  Alexander Rohrbach,et al.  Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. , 2005, Physical review letters.

[234]  M. Zourob,et al.  Optical leaky waveguide sensor for detection of bacteria with ultrasound attractor force. , 2005, Analytical chemistry.

[235]  Yazan A. Hussain,et al.  OTS adsorption : A dynamic QCM study , 2005 .

[236]  H. C. Pedersen,et al.  Optimization of metal-clad waveguide sensors , 2005 .

[237]  Martin Hegner,et al.  Rapid Biosensor for Detection of Antibiotic-Selective Growth of Escherichia coli , 2005, Applied and Environmental Microbiology.

[238]  J. Conly,et al.  Where are all the new antibiotics? The new antibiotic paradox. , 2005, The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale.

[239]  H. C. Pedersen,et al.  Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing , 2005 .

[240]  Darrell Velegol,et al.  Importance of molecular details in predicting bacterial adhesion to hydrophobic surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[241]  H. Albert,et al.  Simple, phage-based (FASTPplaque) technology to determine rifampicin resistance of Mycobacterium tuberculosis directly from sputum. , 2004, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[242]  Pascale Cossart,et al.  Bacterial Invasion: The Paradigms of Enteroinvasive Pathogens , 2004, Science.

[243]  Amit K. Gupta,et al.  Single virus particle mass detection using microresonators with nanoscale thickness , 2004 .

[244]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[245]  M. Parsek,et al.  Bacterial biofilms: an emerging link to disease pathogenesis. , 2003, Annual review of microbiology.

[246]  Henny C van der Mei,et al.  Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. , 2003, Microbiology.

[247]  B. Finlay,et al.  Bacterial pathogenesis: exploiting cellular adherence. , 2003, Current opinion in cell biology.

[248]  A. González-Arenas,et al.  Macrophage--Mycobacterium tuberculosis interactions: role of complement receptor 3. , 2003, Microbial pathogenesis.

[249]  M. Felici,et al.  Safety, reliability and security of industrial computer systems , 2003, Reliab. Eng. Syst. Saf..

[250]  H. C. Pedersen,et al.  Optical waveguide sensor for on-line monitoring of bacteria. , 2003, Optics letters.

[251]  L. Doğancı,et al.  The evaluation of FASTPlaqueTB test for the rapid diagnosis of tuberculosis. , 2003, Diagnostic microbiology and infectious disease.

[252]  J. Heesemann,et al.  Molecular Analysis of Transport and Oligomerization of the Yersinia enterocolitica Adhesin YadA , 2003, Journal of bacteriology.

[253]  M. Zourob,et al.  The development of a metal clad leaky waveguide sensor for the detection of particles , 2003 .

[254]  T. Meyer,et al.  'Small' talk: Opa proteins as mediators of Neisseria-host-cell communication. , 2003, Current opinion in microbiology.

[255]  J. Wehland,et al.  Structure of Internalin, a Major Invasion Protein of Listeria monocytogenes, in Complex with Its Human Receptor E-Cadherin , 2002, Cell.

[256]  C. Hauck Cell adhesion receptors – signaling capacity and exploitation by bacterial pathogens , 2002, Medical Microbiology and Immunology.

[257]  P. Sansonetti,et al.  Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft‐mediated CD44–IpaB interaction , 2002, The EMBO journal.

[258]  R. Donlan,et al.  Biofilms: Microbial Life on Surfaces , 2002, Emerging infectious diseases.

[259]  Yoshimasa Yamamoto PCR in Diagnosis of Infection: Detection of Bacteria in Cerebrospinal Fluids , 2002, Clinical and Vaccine Immunology.

[260]  R. Horváth,et al.  Reverse-symmetry waveguides: theory and fabrication , 2002 .

[261]  J. W. Wilson,et al.  Mechanisms of bacterial pathogenicity , 2002, Postgraduate medical journal.

[262]  H. Craighead,et al.  Single cell detection with micromechanical oscillators , 2001 .

[263]  B. Bassler,et al.  Quorum sensing in bacteria. , 2001, Annual review of microbiology.

[264]  M. Teuber,et al.  Veterinary use and antibiotic resistance. , 2001, Current opinion in microbiology.

[265]  G. Whitesides,et al.  Self-Assembled Monolayers That Resist the Adsorption of Proteins and the Adhesion of Bacterial and Mammalian Cells , 2001 .

[266]  S. Cramton,et al.  Anaerobic Conditions Induce Expression of Polysaccharide Intercellular Adhesin in Staphylococcus aureus and Staphylococcus epidermidis , 2001, Infection and Immunity.

[267]  Alexander M. Klibanov,et al.  Designing surfaces that kill bacteria on contact , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[268]  E. McGhie,et al.  Cooperation between actin‐binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin , 2001, The EMBO journal.

[269]  T. Oelschlaeger Mini-Review=20Adhesins as invasins , 2001 .

[270]  J. Ramsden,et al.  The architecture of fibronectin at surfaces , 2000 .

[271]  R. Isberg,et al.  Integrin β1‐chain residues involved in substrate recognition and specificity of binding to invasin , 2000, Cellular microbiology.

[272]  R. Isberg,et al.  Signaling and invasin-promoted uptake via integrin receptors. , 2000, Microbes and infection.

[273]  S. Hultgren,et al.  Bacterial pili: molecular mechanisms of pathogenesis. , 2000, Current opinion in microbiology.

[274]  C. Edmiston,et al.  Ruthenium red and the bacterial glycocalyx. , 1999, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[275]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[276]  R. Hölzel,et al.  Non-invasive determination of bacterial single cell properties by electrorotation. , 1999, Biochimica et biophysica acta.

[277]  J. Ramsden OWLS: A Versatile Technique for Sensing with Bioarrays , 1999, CHIMIA.

[278]  C. Potera Forging a Link Between Biofilms and Disease , 1999, Science.

[279]  B. Finlay,et al.  Enteropathogenic E. coli, Salmonella, and Shigella: masters of host cell cytoskeletal exploitation. , 1999, Emerging infectious diseases.

[280]  T. Rudel,et al.  Host cell interactions and signalling with Neisseria gonorrhoeae. , 1999, Current opinion in microbiology.

[281]  X. Nassif,et al.  Interaction mechanisms of encapsulated meningococci with eucaryotic cells: what does this tell us about the crossing of the blood-brain barrier by Neisseria meningitidis? , 1999, Current opinion in microbiology.

[282]  C. Dehio,et al.  The role of neisserial Opa proteins in interactions with host cells. , 1998, Trends in microbiology.

[283]  J. Ramsden,et al.  Optical properties of protein monolayers during assembly , 1998 .

[284]  A. Haas,et al.  Reprogramming the phagocytic pathway--intracellular pathogens and their vacuoles (review). , 1998, Molecular membrane biology.

[285]  C. Hueck,et al.  Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants , 1998, Microbiology and Molecular Biology Reviews.

[286]  H. Suh,et al.  Bacterial adhesion on PEG modified polyurethane surfaces. , 1998, Biomaterials.

[287]  P. Cossart,et al.  Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization , 1997, Infection and immunity.

[288]  Samuel Zalipsky,et al.  Poly(ethylene glycol): Chemistry and Biological Applications , 1997 .

[289]  E. Landau,et al.  The Hofmeister series: salt and solvent effects on interfacial phenomena , 1997, Quarterly Reviews of Biophysics.

[290]  J. Galán,et al.  The invasion‐associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell , 1997, Molecular microbiology.

[291]  K. Yamada,et al.  Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors , 1996, The Journal of cell biology.

[292]  A. Ljungh,et al.  Interactions of bacterial adhesins with extracellular matrix and plasma proteins: pathogenic implications and therapeutic possibilities. , 1996, FEMS immunology and medical microbiology.

[293]  R. Isberg,et al.  Bacterial pathogenesis: Common entry mechanisms , 1996, Current Biology.

[294]  P. Cossart,et al.  E-Cadherin Is the Receptor for Internalin, a Surface Protein Required for Entry of L. monocytogenes into Epithelial Cells , 1996, Cell.

[295]  B. Burke,et al.  Cytoskeleton-membrane interactions. , 1996, Current opinion in cell biology.

[296]  C. J. Oss Hydrophobicity of biosurfaces — Origin, quantitative determination and interaction energies , 1995 .

[297]  J E Prenosil,et al.  Measurement of Adhesion and Spreading Kinetics of Baby Hamster Kidney and Hybridoma Cells Using an Integrated Optical Method , 1994, Biotechnology progress.

[298]  J E Prenosil,et al.  Kinetics of adhesion and spreading of animal cells , 1994, Biotechnology and bioengineering.

[299]  J. Ramsden,et al.  Experimental methods for investigating protein adsorption kinetics at surfaces , 1994, Quarterly Reviews of Biophysics.

[300]  J. Ramsden Review of new experimental techniques for investigating random sequential adsorption , 1993 .

[301]  M. Achtman,et al.  Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells , 1993, Molecular microbiology.

[302]  J. Ramsden Partition coefficients of drugs in bilayer lipid membranes , 1993, Experientia.

[303]  Stephen J. Smith,et al.  Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria , 1993, Nature.

[304]  J. Ramsden Calcium‐dependence of laminin binding to phospholipid membranes , 1993, Biopolymers.

[305]  C. Cabellos,et al.  Integrin-mediated localization of Bordetella pertussis within macrophages: role in pulmonary colonization , 1991, The Journal of experimental medicine.

[306]  B. Finlay,et al.  Common themes in microbial pathogenicity , 1989, Microbiological reviews.

[307]  M. Horwitz,et al.  Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors , 1987, The Journal of experimental medicine.

[308]  E Ruoslahti,et al.  New perspectives in cell adhesion: RGD and integrins. , 1987, Science.

[309]  D. Boraker,et al.  Whole-bacterial cell enzyme-linked immunosorbent assay for Streptococcus sanguis fimbrial antigens , 1982, Journal of clinical microbiology.

[310]  J. Costerton,et al.  Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis , 1980, Infection and immunity.

[311]  G. I. Bell Models for the specific adhesion of cells to cells. , 1978, Science.

[312]  P. Buchy,et al.  Impact of vaccines on antimicrobial resistance. , 2019, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[313]  Parthasarathi Pal,et al.  Rapid screening of Mycobacterium tuberculosis complex (MTBC) in clinical samples by a modular portable biosensor , 2018 .

[314]  Quanyan Zhu,et al.  Advanced Sciences and Technologies for Security Applications , 2018 .

[315]  M. Zourob,et al.  Development of Rapid Immuno-based Nanosensors for the Detection of Pathogenic Bacteria in Poultry Processing Plants , 2017 .

[316]  P. Lieberzeit,et al.  Molecular Imprinting Studies for Developing QCM-sensors for Bacillus Cereus , 2016 .

[317]  R. Horváth,et al.  Label-Free Optical Biosensors for Monitoring Cellular Processes and Cytotoxic Agents at Interfaces Using Guided Modes and Advanced Phase-Contrast Imaging Techniques , 2016 .

[318]  Sascha Sauer,et al.  Mass spectrometry tools for the classification and identification of bacteria , 2010, Nature Reviews Microbiology.

[319]  Anjali Mandlik,et al.  Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. , 2008, Trends in microbiology.

[320]  P. Cossart Interactions of the bacterial pathogenListeria monocytogenes with mammalian cells: Bacterial factors, cellular ligands, and signaling , 2008, Folia Microbiologica.

[321]  Anthony Turner,et al.  Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. , 2008 .

[322]  M. Zourob,et al.  An integrated metal clad leaky waveguide sensor for detection of bacteria. , 2005, Analytical chemistry.

[323]  P Stoodley,et al.  Survival strategies of infectious biofilms. , 2005, Trends in microbiology.

[324]  Johannes Lyklema,et al.  Bacterial adhesion: A physicochemical approach , 2005, Microbial Ecology.

[325]  D. Heinz,et al.  Adhesins and invasins of pathogenic bacteria: a structural view. , 2004, Microbes and infection.

[326]  P. Dersch Molecular and cellular mechanisms of bacterial entry into host cells. , 2003, Contributions to microbiology.

[327]  I. Autenrieth,et al.  Interaction of Yersinia enterocolitica with epithelial cells: invasin beyond invasion. , 2003, International journal of medical microbiology : IJMM.

[328]  R L Juliano,et al.  Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. , 2002, Annual review of pharmacology and toxicology.

[329]  M. Skurnik,et al.  YadA, the multifaceted Yersinia adhesin. , 2001, International journal of medical microbiology : IJMM.

[330]  J. Ramsden,et al.  The Distribution of Electron Donor−Acceptor Potential on Protein Surfaces , 2001 .

[331]  J. Ramsden,et al.  Kinetics of monolayer particle deposition , 1998 .

[332]  S. He,et al.  Type III protein secretion systems in plant and animal pathogenic bacteria. , 1998, Annual review of phytopathology.

[333]  Richard C. Willson,et al.  Protein Adsorption Kinetics Drastically Altered by Repositioning a Single Charge , 1995 .

[334]  R. Isberg,et al.  Binding and internalization of microorganisms by integrin receptors. , 1994, Trends in microbiology.

[335]  S Falkow,et al.  The interaction of bacteria with mammalian cells. , 1992, Annual review of cell biology.

[336]  J W Costerton,et al.  The bacterial glycocalyx in nature and disease. , 1981, Annual review of microbiology.

[337]  J W Costerton,et al.  How bacteria stick. , 1978, Scientific American.