A Novel Technique for Steam Turbine Exhaust Pressure Limitation Using Dynamic Pressure Sensors

Abstract In this paper, a novel approach is presented to increase the operational flexibility of steam turbines. Exhaust pressure at the exit of the last-stage blades is one of the most important parameters that limit the operation of a steam turbine, especially on days with hot ambient conditions. The main concern in these off-design high-exhaust pressure operating conditions is that it can result in flow separation, which can lead to aeromechanics instabilities and thus to blade failure because of high-cycle fatigue. In the method proposed in this paper, dynamic pressure transducers are placed around the perimeter of the last-stage blade to measure the pressure variations caused by vibrating last-stage blades. This approach, which is applicable to condensing turbines only, will provide increased exhaust pressure limits through realtime monitoring of the pressure signal and thereby enable the power plant to produce more power during times of peak demand. Finite elements analysis was performed to predict the natural frequencies of the row of blades to distinguish between the synchronous and nonsynchronous modes of vibration. Strain gauges were placed on the blades to obtain the experimental frequency information of the system. Response from the dynamic pressure transducers was compared with responses from the strain gauges. An excellent agreement between the two sets of results proved the validity of the proposed method.