Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction

[1]  R. England,et al.  Igneous sills as a record of horizontal shortening: The San Rafael subvolcanic field, Utah , 2017 .

[2]  N. Youbi,et al.  How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record , 2017 .

[3]  S. Grasby,et al.  Editorial: Mass extinction causality , 2017 .

[4]  S. Grasby,et al.  On the causes of mass extinctions , 2017 .

[5]  H. Svensen,et al.  Global temperature response to century-scale degassing from the Siberian Traps Large igneous province , 2017 .

[6]  S. Petersen,et al.  End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change , 2016, Nature Communications.

[7]  C. Jackson,et al.  Lateral Magma Flow in Mafic Sill‐complexes , 2016 .

[8]  M. Richards,et al.  State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact , 2015, Science.

[9]  B. Beauchamp,et al.  Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction , 2015 .

[10]  M. Radisic,et al.  Platform technology for scalable assembly of instantaneously functional mosaic tissues , 2015, Science Advances.

[11]  P. McGovern,et al.  Effects of crustal‐scale mechanical layering on magma chamber failure and magma propagation within the Venusian lithosphere , 2015 .

[12]  S. Bowring,et al.  High-precision geochronology links the Ferrar large igneous province with early-Jurassic ocean anoxia and biotic crisis , 2015 .

[13]  S. Bowring,et al.  U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction , 2015, Science.

[14]  S. Bowring,et al.  High-precision timeline for Earth’s most severe extinction , 2014, Proceedings of the National Academy of Sciences.

[15]  L. Hinnov,et al.  Time-calibrated Milankovitch cycles for the late Permian , 2013, Nature Communications.

[16]  D. Kent,et al.  Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province , 2013, Science.

[17]  P. Renne,et al.  Time Scales of Critical Events around the Cretaceous-paleogene Boundary , 2022 .

[18]  P. Wignall,et al.  Lethally Hot Temperatures During the Early Triassic Greenhouse , 2012, Science.

[19]  S. Planke,et al.  Rapid magma emplacement in the Karoo Large Igneous Province , 2012 .

[20]  D. Erwin,et al.  Calibrating the End-Permian Mass Extinction , 2011, Science.

[21]  S. Planke,et al.  The impact of host‐rock composition on devolatilization of sedimentary rocks during contact metamorphism around mafic sheet intrusions , 2011 .

[22]  A. Sobolev,et al.  Linking mantle plumes, large igneous provinces and environmental catastrophes , 2011, Nature.

[23]  T. Worsley,et al.  Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions , 2010 .

[24]  K. Daniels,et al.  Dyke propagation and sill formation in a compressive tectonic environment , 2010 .

[25]  U. Schaltegger,et al.  Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level , 2010 .

[26]  R. Summons,et al.  Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event , 2009 .

[27]  C. Ganino,et al.  Climate changes caused by degassing of sediments during the emplacement of large igneous provinces , 2009 .

[28]  J. Fitton,et al.  The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis , 2009 .

[29]  S. Planke,et al.  Siberian gas venting and the end-Permian environmental crisis , 2008 .

[30]  A. Knoll,et al.  Paleophysiology and End-Permian Mass Extinction , 2007 .

[31]  T. Thordarson,et al.  Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective , 2006 .

[32]  R. Sparks,et al.  An experimental investigation of sill formation and propagation in layered elastic media , 2006 .

[33]  A. Saunders,et al.  Volcanism, impact and mass extinctions: incredible or credible coincidences? , 2005 .

[34]  A. Knoll,et al.  Large Perturbations of the Carbon Cycle During Recovery from the End-Permian Extinction , 2004, Science.

[35]  K. Thomson,et al.  Geometry and growth of sill complexes: insights using 3D seismic from the North Rockall Trough , 2004 .

[36]  Y. Amelin,et al.  Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma , 2003 .

[37]  M. Rampino,et al.  Impact Event at the Permian-Triassic Boundary: Evidence from Extraterrestrial Noble Gases in Fullerenes , 2001, Science.

[38]  V. Pinel,et al.  The effect of edifice load on magma ascent beneath a volcano , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  R. Stothers Flood basalts and extinction events , 1993 .

[40]  T. Parsons,et al.  The Role of Magma Overpressure in Suppressing Earthquakes and Topography: Worldwide Examples , 1991, Science.

[41]  H. Svensen,et al.  The effects of large igneous provinces on the global carbon and sulphur cycles , 2016 .

[42]  P. Renne,et al.  On the ages of flood basalt events , 2003 .

[43]  R. Ernst,et al.  The use of mafic dike swarms in identifying and locating mantle plumes , 2001 .