Optimal Decision Trees on Simplicial Complexes

We consider topological aspects of decision trees on simplicial complexes, concentrating on how to use decision trees as a tool in topological combinatorics. By Robin Forman's discrete Morse theory, the number of evasive faces of a given dimension $i$ with respect to a decision tree on a simplicial complex is greater than or equal to the $i$th reduced Betti number (over any field) of the complex. Under certain favorable circumstances, a simplicial complex admits an "optimal" decision tree such that equality holds for each $i$; we may hence read off the homology directly from the tree. We provide a recursive definition of the class of semi-nonevasive simplicial complexes with this property. A certain generalization turns out to yield the class of semi-collapsible simplicial complexes that admit an optimal discrete Morse function in the analogous sense. In addition, we develop some elementary theory about semi-nonevasive and semi-collapsible complexes. Finally, we provide explicit optimal decision trees for several well-known simplicial complexes.

[1]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[2]  S. Bouc,et al.  Homologie de certains ensembles de 2-sous-groupes des groupes symétriques , 1992 .

[3]  Ronald L. Rivest,et al.  A generalization and proof of the Aanderaa-Rosenberg conjecture , 1975, STOC.

[4]  Masahiro Hachimori,et al.  Combinatorics of Constructible Complexes , 2000 .

[5]  Sonoko Moriyama,et al.  Incremental construction properties in dimension two--shellability, extendable shellability and vertex decomposability , 2003, Discret. Math..

[6]  Patricia Hersh On optimizing discrete Morse functions , 2005, Adv. Appl. Math..

[7]  J. Scott Provan,et al.  Decompositions of Simplicial Complexes Related to Diameters of Convex Polyhedra , 1980, Math. Oper. Res..

[8]  László Lovász,et al.  Chessboard Complexes and Matching Complexes , 1994 .

[9]  James G. Oxley,et al.  Matroid theory , 1992 .

[10]  Daniel J. Kleitman,et al.  Further results on the Aanderaa-Rosenberg conjecture , 1980, J. Comb. Theory, Ser. B.

[11]  Hélio Lopes,et al.  Visualizing Forman's Discrete Vector Field , 2002, VisMath.

[12]  John Shareshian,et al.  Discrete Morse theory for complexes of 2-connected graphs , 2001 .

[13]  Volkmar Welker,et al.  Constructions preserving evasiveness and collapsibility , 1999, Discret. Math..

[14]  Patricia Hersh,et al.  Groebner basis degree bounds on $\Tor^{k[\Lambda ]}_\bullet(k,k)_\bullet$ and discrete Morse theory , 2003 .

[15]  Michael E. Saks,et al.  A topological approach to evasiveness , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[16]  V. Turchin Homologies of complexes of doubly connected graphs , 1997 .

[17]  Thomas Lewiner,et al.  Toward Optimality in Discrete Morse Theory , 2003, Exp. Math..

[18]  Hara Charalambous Pointed simplicial complexes , 1997 .

[19]  William Y. C. Chen,et al.  Parameter Augmentation for Basic Hypergeometric Series, II , 1997, J. Comb. Theory, Ser. A.

[20]  M. Wachs SHELLABLE NONPURE COMPLEXES AND POSETS , 1996 .

[21]  Volkmar Welker,et al.  Complexes of Directed Graphs , 1999, SIAM J. Discret. Math..

[22]  Ronald L. Rivest,et al.  On Recognizing Graph Properties from Adjacency Matrices , 1976, Theor. Comput. Sci..

[23]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[24]  Robin Forman,et al.  Morse Theory and Evasiveness , 2000, Comb..

[25]  Zhi-Guo Liu,et al.  Some operator identities and q-series transformation formulas , 2003, Discret. Math..

[26]  R. Forman Morse Theory for Cell Complexes , 1998 .

[27]  Jakob Jonsson On the topology of simplicial complexes related to 3-connected and Hamiltonian graphs , 2003, J. Comb. Theory, Ser. A.

[28]  Manoj K. Chari On discrete Morse functions and combinatorial decompositions , 2000, Discret. Math..

[29]  Michelle L. Wachs,et al.  Shellable nonpure complexes and posets. II , 1996 .

[30]  A. Björner Topological methods , 1996 .

[31]  Konstantin Mischaikow,et al.  Graph Approach to the Computation of the Homology of Continuous Maps , 2005, Found. Comput. Math..

[32]  Melvin Hochster,et al.  Rings of Invariants of Tori, Cohen-Macaulay Rings Generated by Monomials, and Polytopes , 1972 .

[33]  R. Stanley Combinatorics and commutative algebra , 1983 .

[34]  Michelle L. Wachs,et al.  Torsion in the matching complex and chessboard complex , 2004 .

[35]  Subhash Khot,et al.  Evasiveness of Subgraph Containment and Related Properties , 2001, SIAM J. Comput..

[36]  Christos A. Athanasiadis Decompositions and Connectivity of Matching and Chessboard Complexes , 2004, Discret. Comput. Geom..

[37]  Thomas Lewiner,et al.  Optimal discrete Morse functions for 2-manifolds , 2003, Comput. Geom..

[38]  Svante Linusson,et al.  COMPLEXES OF NOT i-CONNECTED GRAPHS , 1997, math/9705219.