Aligned Multi-Task Gaussian Process

Multi-task learning requires accurate identification of the correlations between tasks. In realworld time-series, tasks are rarely perfectly temporally aligned; traditional multi-task models do not account for this and subsequent errors in correlation estimation will result in poor predictive performance and uncertainty quantification. We introduce a method that automatically accounts for temporal misalignment in a unified generative model that improves predictive performance. Our method uses Gaussian processes (GPs) to model the correlations both within and between the tasks. Building on the previous work by Kazlauskaite et al. [2019], we include a separate monotonic warp of the input data to model temporal misalignment. In contrast to previous work, we formulate a lower bound that accounts for uncertainty in both the estimates of the warping process and the underlying functions. Also, our new take on a monotonic stochastic process, with efficient pathwise sampling for the warp functions, allows us to perform full Bayesian inference in the model rather than MAP estimates. Missing data experiments, on synthetic and real time-series, demonstrate the advantages of accounting for misalignments (vs standard unaligned method) as well as modelling the uncertainty in the warping process (vs baseline MAP alignment approach).

[1]  Zheng Wang,et al.  Multi-Fidelity High-Order Gaussian Processes for Physical Simulation , 2020, 2006.04972.

[2]  L. Spezia Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models , 2019 .

[3]  Andrés F. López-Lopera,et al.  Gaussian Process Modulated Cox Processes under Linear Inequality Constraints , 2019, AISTATS.

[4]  Neil D. Lawrence,et al.  Gaussian Processes for Big Data , 2013, UAI.

[5]  Theodoros Damoulas,et al.  Multi-resolution Multi-task Gaussian Processes , 2019, NeurIPS.

[6]  Neil D. Lawrence,et al.  Dataset Shift in Machine Learning , 2009 .

[7]  Neil D. Lawrence,et al.  Bayesian Gaussian Process Latent Variable Model , 2010, AISTATS.

[8]  Samuel Kaski,et al.  Deep learning with differential Gaussian process flows , 2018, AISTATS.

[9]  David B. Dunson,et al.  Bayesian monotone regression using Gaussian process projection , 2013, 1306.4041.

[10]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[11]  Marc Peter Deisenroth,et al.  Efficiently sampling functions from Gaussian process posteriors , 2020, ICML.

[12]  H. Maatouk Finite-dimensional approximation of Gaussian processes with inequality constraints , 2017, 1706.02178.

[13]  Massimiliano Pontil,et al.  Regularized multi--task learning , 2004, KDD.

[14]  Marcus R. Frean,et al.  Dependent Gaussian Processes , 2004, NIPS.

[15]  Maneesh Sahani,et al.  Temporal alignment and latent Gaussian process factor inference in population spike trains , 2018, bioRxiv.

[16]  Floris Ernst,et al.  Compensating for Quasi-periodic Motion in Robotic Radiosurgery , 2011 .

[17]  Edwin V. Bonilla,et al.  Multi-task Gaussian Process Prediction , 2007, NIPS.

[18]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[19]  Ieva Kazlauskaite,et al.  Monotonic Gaussian Process Flows , 2020, AISTATS.

[20]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[21]  David A. Clifton,et al.  Multitask Gaussian Processes for Multivariate Physiological Time-Series Analysis , 2015, IEEE Transactions on Biomedical Engineering.

[22]  Ieva Kazlauskaite,et al.  Sequence Alignment with Dirichlet Process Mixtures , 2018, NIPS 2018.

[23]  Neil D. Lawrence,et al.  Computationally Efficient Convolved Multiple Output Gaussian Processes , 2011, J. Mach. Learn. Res..

[24]  Ilias Bilionis,et al.  Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification , 2013, J. Comput. Phys..

[25]  S. R. Livingstone,et al.  The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English , 2018, PloS one.

[26]  Xiao-Li Meng,et al.  Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage , 2000 .

[27]  Aki Vehtari,et al.  Gaussian processes with monotonicity information , 2010, AISTATS.

[28]  Neil D. Lawrence,et al.  Kernels for Vector-Valued Functions: a Review , 2011, Found. Trends Mach. Learn..

[29]  Samuel Kaski,et al.  Bayesian inference of ODEs with Gaussian processes , 2021, ArXiv.

[30]  Thomas A. Runkler,et al.  Bayesian Alignments of Warped Multi-Output Gaussian Processes , 2018, NeurIPS.

[31]  Neil D. Lawrence,et al.  Efficient inference in matrix-variate Gaussian models with \iid observation noise , 2011, NIPS.

[32]  Neil D. Lawrence,et al.  Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes , 2017, NIPS.

[33]  P. Dutilleul The mle algorithm for the matrix normal distribution , 1999 .

[34]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[35]  H. Wackernagle,et al.  Multivariate geostatistics: an introduction with applications , 1998 .

[36]  Shandian Zhe,et al.  Scalable High-Order Gaussian Process Regression , 2019, AISTATS.

[37]  K. Mardia,et al.  Recent Trends in Modelling Spatio-Temporal Data , 2005 .

[38]  Ieva Kazlauskaite,et al.  Gaussian Process Latent Variable Alignment Learning , 2018, AISTATS.

[39]  S. Bhatt,et al.  A joint Bayesian space–time model to integrate spatially misaligned air pollution data in R‐INLA , 2020, Environmetrics.

[40]  Haitao Liu,et al.  Remarks on multi-output Gaussian process regression , 2018, Knowl. Based Syst..

[41]  David Duvenaud,et al.  Probabilistic ODE Solvers with Runge-Kutta Means , 2014, NIPS.