Long-term increase in diffuse groundwater recharge following expansion of rainfed cultivation in the Sahel, West Africa

Rapid population growth in sub-Saharan West Africa and related cropland expansion were shown in some places to have increased focused recharge through ponds, raising the water table. To estimate changes in diffuse recharge, the water content and matric potential were monitored during 2009 and 2010, and modeling was performed using the Hydrus-1D code for two field sites in southwest Niger: (1) fallow land and (2) rainfed millet cropland. Monitoring results of the upper 10 m showed increased water content and matric potential to greater depth under rainfed cropland (>2.5 m) than under fallow land (≤1.0 m). Model simulations indicate that conversion from fallow land to rainfed cropland (1) increases vadose-zone water storage and (2) should increase drainage flux (∼25 mm year−1) at 10-m depth after a 30–60 year lag. Therefore, observed regional increases in groundwater storage may increasingly result from diffuse recharge, which could compensate, at least in part, groundwater withdrawal due to observed expansion in irrigated surfaces; and hence, contribute to mitigate food crises in the Sahel.RésuméLa forte croissance démographique en Afrique de l’Ouest sub-saharienne et l’expansion associée des zones cultivées ont induit dans certains secteurs une augmentation de la recharge via le réseau de drainage, conduisant à une hausse piézométrique. Afin d’estimer les modifications de la recharge diffuse, la teneur en eau et le potentiel hydrique matriciel ont été enregistrés sur la période 2009-2010, et une modélisation utilisant le code Hydrus-1D a été réalisée sur deux sites dans le Sud-Ouest du Niger : (1) terres en jachère et (2) cultures pluviales de millet. Les résultats du suivi dans les premiers 10 m de la zone non saturée ont induit une augmentation de la teneur en eau et du potentiel hydrique matriciel à plus grande profondeur sous cultures pluviales (>2.5 m) que sous terres en jachère (≤1.0 m). Les simulations indiquent que la conversion de terres en jachère en terres cultivées non irriguées (1) augmente le stockage de l’eau dans la zone vadose et (2) devrait augmenter le flux de drainage (∼25 mm/an) à 10 m de profondeur avec un temps de transit de 30 à 60 ans. Par conséquent, les augmentations régionales observées du stockage de l’eau dans l’aquifère peuvent de plus en plus résulter de la recharge diffuse, qui pourrait compenser, au moins en partie, les diminutions de niveau piézométrique dues à l’expansion des surfaces irriguées; et ainsi, contribuer à atténuer les crises alimentaires au Sahel.ResumenSe demostró que en algunos lugares el rápido crecimiento rápido de la población en el sur del África Occidental subsahariana y la subsecuente expansión de tierras agrícolas han incrementado la recarga focalizada a través de bañaderos, elevando el nivel freático. Para estimar los cambios en la recarga difusa se monitorearon el contenido de agua y el potencial matricial durante 2009 y 2010, y se realizó un modelizacion usando el código Hydrus-1D para dos sitios de campo en el sudoeste de Niger: (1) barbucheras y (2) cultivos de mijo de secano. Los resultados del monitoreo de los 10 m superiores mostraron un incremento del contenido de agua y del potencial matricial a mayor profundidad bajo cultivos de secano (>2.5 m) que bajo barbecho (≤1.0 m). Las simulaciones de los modelos indican que la conversión de barbecho a cultivos de secano (1) incrementa el almacenamiento de agua en la zona vadosa y (2) debería incrementar el flujo del drenaje (∼25 mm year−1) a una profundidad de 10-m después 30–60 años de retardo. Por lo tanto, incrementos regionales observados en el almacenamiento de agua subterránea pueden incrementarse progresivamente como resultado de la recarga difusa, lo cual podría compensar, al menos en parte, la depresión del agua subterránea debido a la expansión observada en las superficies irrigadas; y por lo tanto, contribuir a mitigar la crisis de alimentos en el Sahel.摘要西非撒哈拉以南地区一些地方的人口快速增长及相应的耕地面积扩大增加了通过池塘对地下水的补给,抬高了地下水位。为估算弥散补给变化,监测了2009年 到2010年间的含水量和基质势,采用Hydrus-1D编码对尼日尔西南部两个野外点进行了模拟:(1)休耕地和(2)靠雨水灌溉的小米耕地。上部10米的监测结果显示,靠雨水灌溉的农田含水量和基质势呈增加趋势的深度(>2.5米)比休耕地的(≤1.0)要大。模型模拟表明,休耕地转换成雨水灌溉的农田:(1)渗流带储水量增加,(2)30–60年延迟之后在深度10米处排水通量应当增加 (大约25 mm yr−1)。因此,观测的地下水储量区域性增加可能越来越多地归因于弥散补给,弥散补给至少在某种程度上可以对由于观测到的耕地面积扩大而抽取地下水进行补偿;从而有助于缓解Sahel地区的粮食危机。ResumoO crescimento populacional rápido na África Ocidental subsariana e a correspondente expansão de culturas agrícolas fez com que, nalguns locais, houvesse um aumento da recarga concentrada através de charcos, elevando o nível freático. Para estimar as alterações da recarga difusa, monitorizou-se o teor de humidade e o potencial matricial em 2009 e 2010, e fez-se a modelação utilizando o código Hydrus-1D em dois locais de estudo no sudoeste do Níger: (1) terreno em pousio e (2) cultura de painço usando a precipitação. Os resultados da monitorização dos 10 m superiores mostraram um teor de humidade e do potencial matricial mais elevado até uma maior profundidade para a cultura regada por precipitação (>2.5 m) em relação à terra de pousio (≤1.0 m). As simulações do modelo indicam que a conversão de terrenos de pousio para as culturas regadas por águas de precipitação (1) aumenta o armazenamento de água da zona vadosa e (2) deverá aumentar o fluxo de drenagem (∼25 mm ano−1) à profundidade de 10 m após um período de 30–60 anos. Portanto, os aumentos observados do armazenamento de água subterrânea podem cada vez mais resultar da recarga difusa, que poderia compensar, pelo menos em parte, a extração de águas subterrâneas devido à expansão observada dos regadios; e assim, contribuir para atenuar crises alimentares no Sahel.

[1]  C. Ottlé,et al.  The AMMA-CATCH experiment in the cultivated Sahelian area of south-west Niger – Investigating water cycle response to a fluctuating climate and changing environment , 2009 .

[2]  A. Diouf,et al.  Monitoring land-cover changes in semi-arid regions: remote sensing data and field observations in the Ferlo, Senegal , 2001 .

[3]  T. Lebel,et al.  Hydrology of the HAPEX-Sahel Central Super-Site: surface water drainage and aquifer recharge through the pool systems , 1997 .

[4]  K. H. Hartge,et al.  Feddes, R. A., Kowalik, P. I. und Zaradny, H.: simulation of field water use and crop yield. Pudoc (Centre for agricultural publishing and documentation) Wageningen, Niederlande, 195 Seiten, 13 Abbildungen, Paperback. Preis: hfl 30,– , 1980 .

[5]  Sylvie Galle,et al.  Runoff generation processes: results and analysis of field data collected at the East Central Supersite of the HAPEX-Sahel experiment , 1997 .

[6]  S. Massuel,et al.  Integrated surface water–groundwater modelling in the context of increasing water reserves of a regional Sahelian aquifer , 2011 .

[7]  G. Favreau,et al.  Reply to comment on ‘Long-term rise in a Sahelian water-table: the Continental Terminal in South-West Niger’ by Leduc, C., Favreau, G., Schroeter, P., 2001. Journal of Hydrology 243, 43–54 , 2002 .

[8]  Micha Werner,et al.  Reduction of Monte-Carlo simulation runs for uncertainty estimation in hydrological modelling , 2003 .

[9]  J.-P. Goutorbe,et al.  HAPEX-Sahel: a large-scale study of land-atmosphere interactions in the semi-arid tropics , 1994 .

[10]  Marc Pansu,et al.  Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods , 2006 .

[11]  W. Edmunds,et al.  Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/hyp.6335 Global synthesis of groundwater recharge in semiarid andaridregions , 2022 .

[12]  Change in water loss regulation after canopy clearcut of a dominant shrub in Sahelian agrosystems, Guiera senegalensis J. F. Gmel , 2013, Trees.

[13]  Guillaume Favreau,et al.  Land clearance and hydrological change in the Sahel: SW Niger , 2008 .

[14]  Jennie Barron,et al.  Water productivity in rainfed systems: overview of challenges and analysis of opportunities in water scarcity prone savannahs , 2007, Irrigation Science.

[15]  Warren J. Busscher,et al.  Simulation of Field Water Use and Crop Yield , 1980 .

[16]  S. Massuel,et al.  Deep infiltration through a sandy alluvial fan in semiarid Niger inferred from electrical conductivity survey, vadose zone chemistry and hydrological modelling , 2006 .

[17]  J. Harte,et al.  Energy and water. , 1978, Science.

[18]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[19]  Lu Zhang,et al.  Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality , 2007 .

[20]  H. Treidel Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations , 2011 .

[21]  S. Galle,et al.  Water balance in a banded vegetation pattern: A case study of tiger bush in western Niger , 1999 .

[22]  J. Rockström,et al.  Seasonal rainfall partitioning under runon and runoff conditions on sandy soil in Niger. On-farm measurements and water balance modelling , 1998 .

[23]  B. Scanlon,et al.  Ground water and climate change , 2013 .

[24]  R. Reedy,et al.  Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert region, Rajasthan, India , 2010 .

[25]  Lu Zhang,et al.  Impacts of soil conservation on groundwater recharge in the semi-arid Loess Plateau, China , 2011 .

[26]  H. Gong,et al.  Impact of land use change on groundwater recharge in Guishui River Basin, China , 2011 .

[27]  G. Favreau,et al.  Constraints and opportunities for groundwater irrigation arising from hydrologic shifts in the Iullemmeden Basin, south-western Niger , 2013 .

[28]  V. Smakhtin,et al.  Water-balance approach for assessing potential for smallholder groundwater irrigation in Sub-Saharan Africa , 2012 .

[29]  Hassane Bil-Assanou Issoufou,et al.  Towards an understanding of coupled physical and biological processes in the cultivated Sahel - 2. Vegetation and carbon dynamics , 2009 .

[30]  L. Simmonds,et al.  Dry season water use patterns under Guiera senegalensis L. shrubs in a tropical savanna , 1998 .

[31]  B. Scanlon,et al.  Relationship between geomorphic settings and unsaturated flow in an arid setting , 1999 .

[32]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[33]  J. W. Finch Modelling the soil moisture deficits developed under grass and deciduous woodland: the implications for water resources. , 2000 .

[34]  B. Gérard,et al.  Modeling hydraulic properties of sandy soils of Niger using pedotransfer functions , 2007 .

[35]  J. Brouwer,et al.  Soil measurements during HAPEX-Sahel intensive observation period , 1997 .

[36]  Guillaume Favreau,et al.  Simulated impacts of climate change and land‐clearing on runoff from a small Sahelian catchment , 2004 .

[37]  Petra Döll,et al.  Development and validation of the global map of irrigation areas , 2005 .

[38]  S. Massuel,et al.  Land clearing, climate variability, and water resources increase in semiarid southwest Niger: A review , 2009 .

[39]  G. Favreau,et al.  Long-term rise in a Sahelian water-table: the Continental Terminal in South-West Niger , 2001 .

[40]  Bernard Cappelaere,et al.  Towards an understanding of coupled physical and biological processes in the cultivated Sahel - 1. Energy and water , 2009 .

[41]  Mathieu Le Coz,et al.  Modeling Increased Groundwater Recharge due to Change from Rainfed to Irrigated Cropping in a Semiarid Region , 2013 .

[42]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[43]  Anette Reenberg,et al.  Scientific documentation of crop land changes in the Sahel: A half empty box of knowledge to support policy? , 2013 .

[44]  I. Simmers Understanding Water in a Dry Environment: Hydrological Processes in Arid and Semi-Arid Zones , 2003 .

[45]  M. Schaap,et al.  ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions , 2001 .

[46]  Gil Mahé,et al.  Analysis of a Sahelian annual rainfall index from 1896 to 2000; the drought continues , 2002 .

[47]  Niall P. Hanan,et al.  AMMA-CATCH studies in the Sahelian region of West-Africa: an overview , 2009 .

[48]  J. Bouma,et al.  Measurement of surface redistribution of rainfall and modelling its effect on water balance calculations for a millet field on sandy soil in Niger , 1997 .

[49]  Helen Bonsor,et al.  Quantitative maps of groundwater resources in Africa , 2012 .

[50]  F. Feng,et al.  Reply to "Comment on , 1977 .

[51]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[52]  Robert B. Jackson,et al.  A Global Analysis of Groundwater Recharge for Vegetation, Climate, and Soils , 2012 .

[53]  C. Valentin,et al.  Responses of soil crusting, runoff and erosion to fallowing in the sub-humid and semi-arid regions of West Africa , 2004 .

[54]  S. Massuel,et al.  Constraining Groundwater Modeling with Magnetic Resonance Soundings , 2012, Ground water.

[55]  R. Reedy,et al.  Impact of land use and land cover change on groundwater recharge and quality in the southwestern US , 2005 .

[56]  B. Scanlon,et al.  Assessing controls on diffuse groundwater recharge using unsaturated flow modeling , 2005 .