Multiscale Control of Hierarchical Structure in Crystalline Block Copolymer Nanoparticles Using Microfluidics.

Hierarchical semicrystalline block copolymer nanoparticles are produced in a segmented gas-liquid microfluidic reactor with top-down control of multiscale structural features, including nanoparticle morphologies, sizes, and internal crystallinities. Control of multiscale structure on disparate length scales by a single control variable (flow rate) enables tailoring of drug delivery nanoparticle function including release rates.

[1]  A. Saffari,et al.  Sphere-to-wormlike network transition of block copolymer micelles containing cdSe quantum dots in the corona , 2010 .

[2]  Zhiqiang Fan,et al.  Regulation of Micellar Morphology of PCL‐b‐PEO Block Copolymers by Crystallization Temperature , 2008 .

[3]  David Sinton,et al.  Morphological control via chemical and shear forces in block copolymer self-assembly in the lab-on-chip. , 2013, ACS nano.

[4]  A. Glover,et al.  Polymer micelles with crystalline cores for thermally triggered release. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[5]  R. Liggins,et al.  In vitro human plasma distribution of nanoparticulate paclitaxel is dependent on the physicochemical properties of poly(ethylene glycol)-block-poly(caprolactone) nanoparticles. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[6]  Youqing Shen,et al.  Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers , 2010 .

[7]  Jianfang Wang,et al.  Nanopore extrusion-induced transition from spherical to cylindrical block copolymer micelles. , 2009, Journal of the American Chemical Society.

[8]  Dennis E. Discher,et al.  Filomicelles in nanomedicine - from flexible, fragmentable, and ligand-targetable drug carrier designs to combination therapy for brain tumors. , 2013, Journal of materials chemistry. B.

[9]  David Sinton,et al.  Flow-directed loading of block copolymer micelles with hydrophobic probes in a gas-liquid microreactor. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[10]  Robert Langer,et al.  Microfluidic platform for controlled synthesis of polymeric nanoparticles. , 2008, Nano letters.

[11]  Heinz-Bernhard Kraatz,et al.  Polymeric micelles as drug delivery vehicles , 2014 .

[12]  Hua Ai,et al.  Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. , 2006, Nano letters.

[13]  David Sinton,et al.  Flow-directed block copolymer micelle morphologies via microfluidic self-assembly. , 2011, Journal of the American Chemical Society.

[14]  Yiyong Mai,et al.  Self-assembly of block copolymers. , 2012, Chemical Society reviews.

[15]  M. Yokoyama Polymeric micelles as drug carriers: their lights and shadows , 2014, Journal of drug targeting.

[16]  Christine Allen,et al.  Nano-engineering block copolymer aggregates for drug delivery , 1999 .

[17]  D. Discher,et al.  Shape effects of filaments versus spherical particles in flow and drug delivery. , 2007, Nature nanotechnology.

[18]  Mitchell A. Winnik,et al.  Cylindrical Block Copolymer Micelles and Co-Micelles of Controlled Length and Architecture , 2007, Science.

[19]  Lifeng Zhang,et al.  Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers , 1995, Science.

[20]  S. Förster,et al.  From self-organizing polymers to nanohybrid and biomaterials. , 2002, Angewandte Chemie.

[21]  A. Eisenberg,et al.  Multiple Morphologies and Characteristics of “Crew-Cut” Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions , 1996 .

[22]  Zhibo Li,et al.  Multicompartment Micelles from ABC Miktoarm Stars in Water , 2004, Science.

[23]  Yitao Wang,et al.  Polymeric micelles drug delivery system in oncology. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[24]  Kandaswamy Vijayan,et al.  Micelles of Different Morphologies—Advantages of Worm-like Filomicelles of PEO-PCL in Paclitaxel Delivery , 2007, Pharmaceutical Research.

[25]  L. Capretto,et al.  Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. , 2013, Advanced drug delivery reviews.

[26]  D. Discher,et al.  From stealthy polymersomes and filomicelles to "self" Peptide-nanoparticles for cancer therapy. , 2014, Annual review of chemical and biomolecular engineering.

[27]  David Sinton,et al.  Flow-directed assembly of block copolymer vesicles in the lab-on-a-chip. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[28]  Sheng Zhong,et al.  Block Copolymer Assembly via Kinetic Control , 2007, Science.

[29]  Zhiqiang Fan,et al.  Two Growth Modes of Semicrystalline Cylindrical Poly(ε-caprolactone)-b-poly(ethylene oxide) Micelles , 2012 .

[30]  T. V. D. van de Ven,et al.  Crystallinity-driven morphological ripening processes for poly(ethylene oxide)-block-polycaprolactone micelles in water. , 2014, Soft matter.

[31]  Sankaran Thayumanavan,et al.  Fluorescence patterns from supramolecular polymer assembly and disassembly for sensing metallo- and nonmetalloproteins. , 2009, Journal of the American Chemical Society.

[32]  A. Jen,et al.  Enhancement of Aggregation‐Induced Emission in Dye‐Encapsulating Polymeric Micelles for Bioimaging , 2010 .

[33]  Paula T Hammond,et al.  The effects of polymeric nanostructure shape on drug delivery. , 2011, Advanced drug delivery reviews.

[34]  S. Parveen,et al.  Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[35]  Gaetano Lamberti,et al.  Flow induced crystallisation of polymers. , 2014, Chemical Society reviews.

[36]  Vladimir P Torchilin,et al.  PEG-based micelles as carriers of contrast agents for different imaging modalities. , 2002, Advanced drug delivery reviews.

[37]  Michael L Klein,et al.  Emerging Applications of Polymersomes in Delivery: from Molecular Dynamics to Shrinkage of Tumors. , 2007, Progress in polymer science.

[38]  Frank S Bates,et al.  On the Origins of Morphological Complexity in Block Copolymer Surfactants , 2003, Science.

[39]  D. Discher,et al.  Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles. , 2005, Journal of the American Chemical Society.

[40]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[41]  Wei-Na He,et al.  Crystallization assisted self-assembly of semicrystalline block copolymers , 2012 .