A general nonlinear Fokker-Planck equation and its associated entropy

Abstract.A recently introduced nonlinear Fokker-Planck equation, derived directly from a master equation, comes out as a very general tool to describe phenomenologically systems presenting complex behavior, like anomalous diffusion, in the presence of external forces. Such an equation is characterized by a nonlinear diffusion term that may present, in general, two distinct powers of the probability distribution. Herein, we calculate the stationary-state distributions of this equation in some special cases, and introduce associated classes of generalized entropies in order to satisfy the H-theorem. Within this approach, the parameters associated with the transition rates of the original master-equation are related to such generalized entropies, and are shown to obey some restrictions. Some particular cases are discussed.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Alfréd Rényi,et al.  Probability Theory , 1970 .

[3]  H. Haken,et al.  Synergetics , 1988, IEEE Circuits and Devices Magazine.

[4]  Michael Brereton,et al.  A Modern Course in Statistical Physics , 1981 .

[5]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[6]  H. Risken Fokker-Planck Equation , 1984 .

[7]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[8]  Editors , 1986, Brain Research Bulletin.

[9]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  A. R. Plastino,et al.  Non-extensive statistical mechanics and generalized Fokker-Planck equation , 1995 .

[12]  Tsallis,et al.  Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  A. Compte,et al.  Non-equilibrium thermodynamics and anomalous diffusion , 1996 .

[14]  Sumiyoshi Abe,et al.  A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics , 1997 .

[15]  C. Tsallis,et al.  Information gain within nonextensive thermostatistics , 1998 .

[16]  Lisa Borland,et al.  Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model , 1998 .

[17]  Ernesto P. Borges,et al.  A family of nonextensive entropies , 1998 .

[18]  P. Landsberg,et al.  Distributions and channel capacities in generalized statistical mechanics , 1998 .

[19]  L. Reichl,et al.  A Modern Course in Statistical Physics, 2nd Edition , 1998 .

[20]  Angel Plastino,et al.  Nonlinear Fokker–Planck equations and generalized entropies , 1998 .

[21]  A. Plastino,et al.  The nonlinear Fokker-Planck equation with state-dependent diffusion - a nonextensive maximum entropy approach , 1999 .

[22]  Evaldo M. F. Curado,et al.  General aspects of the thermodynamical formalism , 1999 .

[23]  Andreas Daffertshofer,et al.  Nonlinear Fokker-Planck equations whose stationary solutions make entropy-like functionals stationary , 1999 .

[24]  Celia Anteneodo,et al.  Maximum entropy approach to stretched exponential probability distributions , 1999 .

[25]  Till D. Frank On nonlinear and nonextensive diffusion and the second law of thermodynamics , 2000 .

[26]  Andreas Daffertshofer,et al.  H-theorem for nonlinear Fokker–Planck equations related to generalized thermostatistics , 2001 .

[27]  G. Kaniadakis,et al.  Non-linear kinetics underlying generalized statistics , 2001 .

[28]  A. Daffertshofer,et al.  Multivariate nonlinear Fokker–Planck equations and generalized thermostatistics , 2001 .

[29]  Till D. Frank A Langevin approach for the microscopic dynamics of nonlinear Fokker–Planck equations , 2001 .

[30]  E K Lenzi,et al.  Nonlinear equation for anomalous diffusion: Unified power-law and stretched exponential exact solution. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Masatoshi Shiino,et al.  Free energies based on generalized entropies and H-theorems for nonlinear Fokker–Planck equations , 2001 .

[32]  E K Lenzi,et al.  N-dimensional nonlinear Fokker-Planck equation with time-dependent coefficients. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  C. Tsallis,et al.  Crossover in diffusion equation: anomalous and normal behaviors. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Evaldo M F Curado,et al.  Derivation of nonlinear Fokker-Planck equations by means of approximations to the master equation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Pierre-Henri Chavanis Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  George Rowlands,et al.  A procedure for obtaining general nonlinear Fokker–Planck equations , 2004 .

[37]  Evaldo M. F. Curado,et al.  On the stability of analytic entropic forms , 2004 .

[38]  Pierre-Henri Chavanis Generalized Fokker–Planck equations and effective thermodynamics , 2004 .

[39]  T. Frank Nonlinear Fokker-Planck Equations: Fundamentals and Applications , 2004 .

[40]  C. Tsallis,et al.  Nonextensive Entropy: Interdisciplinary Applications , 2004 .

[41]  T. D. Frank,et al.  Nonlinear Fokker-Planck Equations , 2005 .

[42]  G. Kaniadakis,et al.  Statistical mechanics in the context of special relativity. II. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Constantino Tsallis,et al.  Special issue overview Nonextensive statistical mechanics: new trends, new perspectives , 2005 .