A mesh distortion tolerant 8-node solid element based on the partition of unity method with inter-element compatibility and completeness properties

An 8-node solid element is developed based on the partition of unity method. The formulation uses isoparametric shape functions of the classical 8-node solid element to form the partition of unity and a modified least squares shape functions based on the point interpolation method for the local approximation. The motivation for the formulation is to obtain an element that ensures both inter-element compatibility and completeness properties. An element that simultaneously satisfies both these properties is capable of good performances under distorted mesh shapes. This is reflected in the numerical experiments reported in this paper.

[1]  Gangan Prathap,et al.  Eight-node field-consistent hexahedron element in dynamic problems , 1999 .

[2]  K. M. Liew,et al.  A novel unsymmetric 8‐node plane element immune to mesh distortion under a quadratic displacement field , 2003 .

[3]  Guirong Liu,et al.  A point interpolation method for two-dimensional solids , 2001 .

[4]  E. Ooi,et al.  Mesh‐distortion immunity assessment of QUAD8 elements by strong‐form patch tests , 2006 .

[5]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[6]  U. Shrinivasa,et al.  A 14-node brick element, PN5X1, exactly representing linear stress fields , 2000 .

[7]  Genki Yagawa,et al.  Generalized nodes and high‐performance elements , 2005 .

[8]  Ning Hu,et al.  A 3D brick element based on Hu–Washizu variational principle for mesh distortion , 2002 .

[9]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[10]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[11]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[12]  I. Babuska,et al.  The generalized finite element method , 2001 .

[13]  G. Prathap The Finite Element Method in Structural Mechanics , 1993 .

[14]  K. M. Liew,et al.  Completeness requirements of shape functions for higher order finite elements , 2000 .

[15]  E. Oñate,et al.  A hierarchical finite element method based on the partition of unity , 1998 .

[16]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[17]  Genki Yagawa,et al.  Linear dependence problems of partition of unity-based generalized FEMs , 2006 .

[18]  T. Strouboulis,et al.  The generalized finite element method: an example of its implementation and illustration of its performance , 2000 .

[19]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[20]  U. Shrinivasa,et al.  A set of pathological tests to validate new finite elements , 2001 .

[21]  Peter Wriggers,et al.  IMPROVED ENHANCED STRAIN FOUR-NODE ELEMENT WITH TAYLOR EXPANSION OF THE SHAPE FUNCTIONS , 1997 .

[22]  K. Bathe Finite Element Procedures , 1995 .

[23]  Hitoshi Matsubara,et al.  Advanced 4‐node tetrahedrons , 2006 .

[24]  K. Bathe,et al.  Effects of element distortions on the performance of isoparametric elements , 1993 .

[25]  A. Samuelsson,et al.  Further discussion on four-node isoparametric quadrilateral elements in plane bending , 2000 .

[26]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .