Robust optimization of the NASA C3X gas turbine vane under uncertain operational conditions

Abstract The aim of the current paper is the robust optimization of an internally cooled gas turbine vane by increasing the cooling performance and decreasing the sensitivity of the performance against operational uncertainties. The basic geometry of the C3X vane cooling system consists of ten circular channels for reducing the heat load. The numerical analysis is performed using the conjugate heat transfer methodology and the v 2 − f turbulence model to minimize the simulation error. The operational conditions are considered to be uncertain with Beta probability distribution functions. For quantification of the uncertainties, the polynomial chaos method is used. The main objective of the present study is to increase the blade life span through the minimization of the vane maximum temperature and maximum temperature gradient. To this end, both deterministic and robust optimizations are carried out via a hybrid evolutionary algorithm. The deterministic optimum blade yields lower maximum temperature and temperature gradients. The optimization results clearly show that the robust optimum design is less sensitive to the operational uncertainties, and the maximum blade temperature and temperature gradient are still remarkably lower than the corresponding values of the baseline C3X vane configuration.

[1]  George S. Dulikravich,et al.  Parallel Thermoelasticity Optimization of 3-D Serpentine Cooling Passages in Turbine Blades , 2003 .

[2]  S. Salehi,et al.  Probabilistic CFD computations of gas turbine vane under uncertain operational conditions , 2019, Applied Thermal Engineering.

[3]  P. Durbin Near-wall turbulence closure modeling without “damping functions” , 1991, Theoretical and Computational Fluid Dynamics.

[4]  Erwie Zahara,et al.  A hybrid genetic algorithm and particle swarm optimization for multimodal functions , 2008, Appl. Soft Comput..

[5]  Mehrdad Raisee,et al.  Combination of Polynomial Chaos with Adjoint Formulations for Optimization Under Uncertainties , 2018, Uncertainty Management for Robust Industrial Design in Aeronautics.

[6]  Eugenio Oñate,et al.  Lift maximization with uncertainties for the optimization of high lift devices using Multi-Criterion Evolutionary Algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[7]  Mohamed A. Tawhid,et al.  A hybrid particle swarm optimization and genetic algorithm with population partitioning for large scale optimization problems , 2017 .

[8]  Julien Marzat,et al.  Worst-case global optimization of black-box functions through Kriging and relaxation , 2012, Journal of Global Optimization.

[9]  Marcelo Lopes de Oliveira e Souza,et al.  Station Keeping of Constellations Using Multiobjective Strategies , 2013 .

[10]  Shahrokh Shahpar,et al.  Toward Affordable Uncertainty Quantification for Industrial Problems: Part I — Theory and Validation , 2017 .

[11]  Sankaran Mahadevan,et al.  Effectively Subsampled Quadratures for Least Squares Polynomial Approximations , 2016, SIAM/ASA J. Uncertain. Quantification.

[12]  M.H. Moradi,et al.  A combination of Genetic Algorithm and Particle Swarm Optimization for optimal DG location and sizing in distribution systems , 2010, 2010 Conference Proceedings IPEC.

[13]  Claudia Schillings,et al.  On the influence of robustness measures on shape optimization with stochastic uncertainties , 2015 .

[14]  Thomas J. Martin,et al.  Minimization of Coolant Mass Flow Rate in Internally Cooled Gas Turbine Blades , 1999 .

[15]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[16]  Jinsoo Cho,et al.  Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes , 2016 .

[17]  Xiaoqi Yang,et al.  Optimality Conditions for Semi-Infinite and Generalized Semi-Infinite Programs Via Lower Order Exact Penalty Functions , 2016, J. Optim. Theory Appl..

[18]  Kok Lay Teo,et al.  A new exact penalty method for semi-infinite programming problems , 2014, J. Comput. Appl. Math..

[19]  P. John Clarkson,et al.  Adaptive Polynomial Chaos for Gas Turbine Compression Systems Performance Analysis , 2010 .

[20]  Christophe Mabilat,et al.  Non-Deterministic CFD Simulation of a Transonic Compressor Rotor , 2009 .

[21]  Kai-Yew Lum,et al.  Max-min surrogate-assisted evolutionary algorithm for robust design , 2006, IEEE Transactions on Evolutionary Computation.

[22]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[23]  Andy J. Keane,et al.  Robust design using Bayesian Monte Carlo , 2008 .

[24]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[25]  H. Luthi Algorithms for Worst-Case Design and Applications to Risk Management:Algorithms for Worst-Case Design and Applications to Risk Management , 2002 .

[26]  Gianluca Iaccarino,et al.  Uncertainty Quantification in Turbomachinery Simulations , 2016 .

[27]  Włodzimierz Wróblewski,et al.  Optimization of blade cooling system with use of conjugate heat transfer approach , 2011 .

[28]  Anthony V. Sebald,et al.  Minimax design of neural net controllers for highly uncertain plants , 1994, IEEE Trans. Neural Networks.

[29]  C. Lacor,et al.  A non‐intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition , 2015 .

[30]  M. Eldred,et al.  Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos. , 2008 .

[31]  Hester Bijl,et al.  The Application of the Probabilistic Collocation Method to a Transonic Axial Flow Compressor , 2010 .

[32]  Madhan Shridhar Phadke,et al.  Quality Engineering Using Robust Design , 1989 .

[33]  C. Lacor,et al.  Multi-objective optimization of turbomachinery using improved NSGA-II and approximation model , 2011 .

[34]  Joaquim R. R. A. Martins,et al.  Aerothermal Optimization of Internal Cooling Passages Using a Discrete Adjoint Method , 2018, 2018 Joint Thermophysics and Heat Transfer Conference.

[35]  Chia-Feng Juang,et al.  A hybrid of genetic algorithm and particle swarm optimization for recurrent network design , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[36]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[37]  Paul A. Durbin,et al.  Application of a near-wall turbulence model to boundary layers and heat transfer , 1993 .

[38]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[39]  J. Kapat,et al.  Topology Optimization of Serpentine Channels for Minimization of Pressure Loss and Maximization of Heat Transfer Performance As Applied for Additive Manufacturing , 2019, Volume 5B: Heat Transfer.

[40]  Jean-Paul Bonnet,et al.  Compressibility, Turbulence and High Speed Flow , 2009 .

[41]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[42]  Jeroen A. S. Witteveen,et al.  Wind Turbine Performance Analysis Under Uncertainty , 2011 .

[43]  Francesco Montomoli,et al.  Gas Turbines and Uncertainty Quantification: Impact of PDF Tails on UQ Predictions, the Black Swan , 2013 .

[44]  Franck Nicoud,et al.  Development and assessment of a coupled strategy for conjugate heat transfer with Large Eddy Simulation: Application to a cooled turbine blade , 2009 .

[45]  Jiang Luo,et al.  Conjugate heat transfer analysis of a cooled turbine vane using the V2F turbulence model , 2007 .

[46]  Karim Mazaheri,et al.  Turbine blade cooling passages optimization using reduced conjugate heat transfer methodology , 2016 .

[47]  Andy J. Keane,et al.  Robust Design of Compressor Fan Blades Against Erosion , 2006 .

[48]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[49]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[50]  Alper Atamtürk Strong Formulations of Robust Mixed 0–1 Programming , 2006, Math. Program..

[51]  Włodzimierz Wróblewski,et al.  Cooling system optimisation of turbine guide vane , 2009 .

[52]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[53]  Chi Ma,et al.  Robust Optimization Design of Compressor Blade Considering Machining Error , 2017 .

[54]  P. Durbin SEPARATED FLOW COMPUTATIONS WITH THE K-E-V2 MODEL , 1995 .

[55]  Bruno Facchini,et al.  Conjugate Heat Transfer Simulation of a Radially Cooled Gas Turbine Vane , 2004 .

[56]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[57]  Francesco Montomoli,et al.  Uncertainty Quantification and Conjugate Heat Transfer: A Stochastic Analysis , 2013 .

[58]  Srinath V. Ekkad,et al.  Gas Turbine Heat Transfer and Cooling Technology , 2012 .

[59]  Sebastian Stiller,et al.  Optimization over Integers with Robustness in Cost and Few Constraints , 2011, WAOA.

[60]  N. Wiener The Homogeneous Chaos , 1938 .

[61]  Jeroen A. S. Witteveen,et al.  Effect of randomness on multi-frequency aeroelastic responses resolved by Unsteady Adaptive Stochastic Finite Elements , 2009, J. Comput. Phys..

[62]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[63]  Shahrokh Shahpar,et al.  AFFORDABLE UNCERTAINTY QUANTIFICATION FOR INDUSTRIAL PROBLEMS: APPLICATION TO AERO-ENGINE FANS , 2018 .

[64]  Eugenio Oñate,et al.  Lift maximization with uncertainties for the optimization of high‐lift devices , 2010 .

[65]  M. Raisee,et al.  Effects of operational and geometrical uncertainties on heat transfer and pressure drop of ribbed passages , 2017 .

[66]  Jeroen A. S. Witteveen,et al.  Wind Turbine Optimization Under Uncertainty with High Performance Computing , 2011 .

[67]  Francesco Montomoli,et al.  Design for Additive Manufacturing: Internal Channel Optimization , 2016 .

[68]  Tadeusz Chmielniak,et al.  Optimization of Cooling Passages Within a Turbine Vane , 2005 .

[69]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[70]  Jing Ren,et al.  Conjugate Heat Transfer Analysis for Film Cooling Configurations With Different Hole Geometries , 2003 .