A Hybrid Genetic—GRASP Algorithm Using Lagrangean Relaxation for the Traveling Salesman Problem

Hybridization techniques are very effective for the solution of combinatorial optimization problems. This paper presents a genetic algorithm based on Expanding Neighborhood Search technique (Marinakis, Migdalas, and Pardalos, Computational Optimization and Applications, 2004) for the solution of the traveling salesman problem: The initial population of the algorithm is created not entirely at random but rather using a modified version of the Greedy Randomized Adaptive Search Procedure. Farther more a stopping criterion based on Lagrangean Relaxation is proposed. The combination of these different techniques produces high quality solutions. The proposed algorithm was tested on numerous benchmark problems from TSPLIB with very satisfactory results. Comparisons with the algorithms of the DIMACS Implementation Challenge are also presented.

[1]  G. Clarke,et al.  Scheduling of Vehicles from a Central Depot to a Number of Delivery Points , 1964 .

[2]  Eugene L. Lawler,et al.  The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization , 1985 .

[3]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[4]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[5]  Panos M. Pardalos,et al.  Expanding Neighborhood GRASP for the Traveling Salesman Problem , 2005, Comput. Optim. Appl..

[6]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[7]  Celso C. Ribeiro,et al.  Greedy Randomized Adaptive Search Procedures , 2003, Handbook of Metaheuristics.

[8]  Keld Helsgaun,et al.  An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..

[9]  Jon Jouis Bentley,et al.  Fast Algorithms for Geometric Traveling Salesman Problems , 1992, INFORMS J. Comput..

[10]  Scott Robert Ladd,et al.  Genetic algorithms in C , 1995 .

[11]  Forschungsinstitut für Diskrete Chained Lin-Kernighan for Large Traveling Salesman Problems , 2003 .

[12]  D. Corneil,et al.  Efficient cluster compensation for lin-kernighan heuristics , 1999 .

[13]  Martin Zachariasen,et al.  Tabu Search on the Geometric Traveling Salesman Problem , 1996 .

[14]  G. Nemhauser,et al.  Integer Programming , 2020 .

[15]  David S. Johnson,et al.  Local Optimization and the Traveling Salesman Problem , 1990, ICALP.

[16]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[17]  Jean-Yves Potvin,et al.  Genetic Algorithms for the Traveling Salesman Problem , 2005 .

[18]  Gilbert Laporte,et al.  New Insertion and Postoptimization Procedures for the Traveling Salesman Problem , 1992, Oper. Res..

[19]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[20]  David S. Johnson,et al.  8. The traveling salesman problem: a case study , 2003 .