A Sustainable Nuclear Fuel Cycle Based on Laser Inertial Fusion Energy
暂无分享,去创建一个
Per F. Peterson | Kevin J. Kramer | Edward I. Moses | Joseph C. Farmer | Jeffery F. Latkowski | Ryan P. Abbott | Henry F. Shaw | P. Peterson | E. Moses | R. Abbott | T. D. de la Rubia | J. Farmer | K. Kramer | J. Latkowski | H. Shaw | Erik Storm | E. Storm | Tomas Diaz de la Rubia | Ronald F. Lehman | R. F. Lehman
[1] Michael D. Perry,et al. Ignition and high gain with ultrapowerful lasers , 1994 .
[2] R. Petzoldt,et al. IFE Target Injection Tracking and Position Prediction Update , 2005 .
[3] Andy J. Bayramian,et al. The Mercury Project: A High Average Power, Gas-Cooled Laser for Inertial Fusion Energy Development , 2007 .
[4] H. Bethe. The fusion hybrid , 1979 .
[5] E. Schneider,et al. Fusion-Fission Transmutation Scheme-Efficient Destruction of Nuclear Waste , 2012 .
[6] S P Potter,et al. Energy supply. , 1973, Science.
[7] Stephen A. Payne,et al. Fused Silica Final Optics for Inertial Fusion Energy: Radiation Studies and System-Level Analysis , 2003 .
[8] Stefano Atzeni,et al. Fast Ignition: Overview and Background , 2006 .
[9] William F. Krupke,et al. A diode pumped solid state laser driver for inertial fusion energy , 1998 .
[10] R. W. Petzoldt,et al. Target Injection with Electrostatic Acceleration , 2008 .
[11] V. V. Kharitonov,et al. Hybrid reactor based on laser thermonuclear fusion , 1987 .
[12] J. Nuckolls,et al. Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.
[13] W. Stacey. CORRIGENDUM: Capabilities of a DT tokamak fusion neutron source for driving a spent nuclear fuel transmutation reactor , 2001 .
[14] O. Landen,et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .
[15] Diana C. Chen,et al. FOR LASER ICF FISSION ENERGY ( LIFE ) , 2009 .
[16] S. Thevuthasan,et al. The Stability of 9Cr-ODS Oxide Particles Under Heavy-Ion Irradiation , 2005 .
[17] Yousry Gohar,et al. Fusion solution to dispose of spent nuclear fuel, transuranic elements, and highly enriched uranium , 2001 .
[18] P. Peterson,et al. Overview of Fission Safety for Laser ICF Fission Energy , 2009 .
[19] Andy J. Bayramian,et al. Nd:Glass Laser Design for Laser ICF Fission Energy (LIFE) , 2009 .
[20] Kenneth R. Manes,et al. Laser Design Basis for the National Ignition Facility , 1994 .
[21] S. Ukai,et al. Low cycle fatigue properties of ODS ferritic–martensitic steels at high temperature , 2007 .
[22] D. T. Goodin,et al. Developing a Commercial Production Process for 500,000 Targets Per Day --- A Key Challenge for Inertial Fusion Energy , 2005 .
[23] R P Abbott,et al. Thermal and Mechanical Design Aspects of the LIFE Engine , 2009 .
[24] J. F. Latkowski,et al. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE) , 2008 .
[25] Per F. Peterson,et al. Optimization of Advanced High-Temperature Brayton Cycles with Multiple-Reheat Stages , 2007 .
[26] Gregory A. Moses,et al. Inertial confinement fusion , 1982 .
[27] Hangbok Choi,et al. Sensitivity analysis of a dry-processed Candu fuel pellet's design parameters , 2007 .
[28] J. A. Maniscalco,et al. Present status of laser driven fusion--fission energy systems , 1978 .
[29] Neil Alexander,et al. Mass Production Methods for Fabrication of Inertial Fusion Targets , 2007 .