The Morphology of the Topside Martian Ionosphere: Implications on Bulk Ion Flow
暂无分享,去创建一个
S. Xu | D. Mitchell | Y. Wei | Z. Rong | J. Cui | X.‐S. Wu | N. Edberg | R. Lillis | R. Yelle | Y. Cao | J.‐P. Guo | F. Jiang | E. Vigren | S. S. Xu | K. Fan | Y. Cao
[1] D. Mitchell,et al. Observations and Modeling of the Mars Low‐Altitude Ionospheric Response to the 10 September 2017 X‐Class Solar Flare , 2018, Geophysical Research Letters.
[2] B. Jakosky,et al. Magnetic Reconnection on Dayside Crustal Magnetic Fields at Mars: MAVEN Observations , 2018 .
[3] A. Kopf,et al. Shapes of Magnetically Controlled Electron Density Structures in the Dayside Martian Ionosphere , 2018 .
[4] D. Mitchell,et al. Ionizing Electrons on the Martian Nightside: Structure and Variability , 2018 .
[5] T. Koskinen,et al. The Impact of Crustal Magnetic Fields on the Thermal Structure of the Martian Upper Atmosphere , 2018 .
[6] D. Mitchell,et al. High‐Altitude Closed Magnetic Loops at Mars Observed by MAVEN , 2017 .
[7] D. Mitchell,et al. Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization , 2017, Geophysical research letters.
[8] B. Jakosky,et al. The Effect of Solar Wind Variations on the Escape of Oxygen Ions From Mars Through Different Channels: MAVEN Observations , 2017 .
[9] Y. Ma,et al. Estimates of Ionospheric Transport and Ion Loss at Mars , 2017 .
[10] S. Barabash,et al. Martian ionosphere observed by Mars Express. 2. Influence of solar irradiance on upper ionosphere and escape fluxes , 2017 .
[11] D. Mitchell,et al. Characterization of Low‐Altitude Nightside Martian Magnetic Topology Using Electron Pitch Angle Distributions , 2017 .
[12] J. Forbes,et al. Sources of Ionospheric Variability at Mars , 2017 .
[13] Bruce M. Jakosky,et al. Nightside ionosphere of Mars: Composition, vertical structure, and variability , 2017 .
[14] B. Jakosky,et al. Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars Atmosphere and Volatile EvolutioN mission observations , 2017 .
[15] B. Jakosky,et al. Martian low‐altitude magnetic topology deduced from MAVEN/SWEA observations , 2016 .
[16] S. Asmar,et al. Mars Express 10 years at Mars: Observations by the Mars Express Radio Science Experiment (MaRS) , 2016 .
[17] M. Lester,et al. The effect of the induced magnetic field on the electron density vertical profile of the Mars’ ionosphere: a Mars Express MARSIS radar data analysis and interpretation, a case study , 2016 .
[18] B. Jakosky,et al. Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data , 2016 .
[19] B. Jakosky,et al. Enhanced O2+ loss at Mars due to an ambipolar electric field from electron heating , 2016 .
[20] D. Andrews,et al. Martian ionosphere observed by Mars Express. 1. Influence of the crustal magnetic fields , 2016 .
[21] Arnett,et al. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission , 2015 .
[22] B. Jakosky,et al. MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument , 2015 .
[23] B. Jakosky,et al. The spatial distribution of planetary ion fluxes near Mars observed by MAVEN , 2015 .
[24] B. Jakosky,et al. Comparison of model predictions for the composition of the ionosphere of Mars to MAVEN NGIMS data , 2015 .
[25] B. Jakosky,et al. Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations , 2015 .
[26] B. Jakosky,et al. MAVEN and the Mars Initial Reference Ionosphere model , 2015 .
[27] Bruce M. Jakosky,et al. Initial results from the MAVEN mission to Mars , 2015 .
[28] B. Jakosky,et al. Ionopause‐like density gradients in the Martian ionosphere: A first look with MAVEN , 2015 .
[29] B. Jakosky,et al. Water and water ions in the Martian thermosphere/ionosphere , 2015 .
[30] B. Jakosky,et al. Changes in the thermosphere and ionosphere of Mars from Viking to MAVEN , 2015 .
[31] Bruce M. Jakosky,et al. First measurements of composition and dynamics of the Martian ionosphere by MAVEN's Neutral Gas and Ion Mass Spectrometer , 2015 .
[32] B. Jakosky,et al. Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation , 2015, Geophysical research letters.
[33] R. Ergun,et al. The Langmuir Probe and Waves (LPW) Instrument for MAVEN , 2015 .
[34] D. Andrews,et al. MARSIS remote sounding of localized density structures in the dayside Martian ionosphere: A study of controlling parameters , 2015 .
[35] R. Lillis,et al. Electron impact ionization in the Martian atmosphere: Interplay between scattering and crustal magnetic field effects , 2015 .
[36] S. Barabash,et al. The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations , 2015 .
[37] B. Jakosky,et al. Metallic ions in the upper atmosphere of Mars from the passage of comet C/2013 A1 (Siding Spring) , 2015 .
[38] H. Opgenoorth,et al. Control of the topside Martian ionosphere by crustal magnetic fields , 2015 .
[39] J. Cui,et al. Day‐to‐night transport in the Martian ionosphere: Implications from total electron content measurements , 2015 .
[40] Ronald J. Oliversen,et al. First results of the MAVEN magnetic field investigation , 2015 .
[41] M. Mendillo,et al. Interpreting Mars ionospheric anomalies over crustal magnetic field regions using a 2‐D ionospheric model , 2015 .
[42] Christopher T. Russell,et al. Effects of crustal field rotation on the solar wind plasma interaction with Mars , 2014 .
[43] H. Opgenoorth,et al. Oblique reflections in the Mars Express MARSIS data set: Stable density structures in the Martian ionosphere , 2014 .
[44] S. Barabash,et al. Solar cycle effects on the ion escape from Mars , 2013 .
[45] D. Gurnett,et al. A new semiempirical model of the peak electron density of the Martian ionosphere , 2013 .
[46] Francisco Gonzalez-Galindo,et al. Three‐dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km , 2013 .
[47] Robert J. Lillis,et al. Nightside electron precipitation at Mars: Geographic variability and dependence on solar wind conditions , 2013 .
[48] M. Mendillo,et al. The composition of Mars' topside ionosphere: Effects of hydrogen , 2013 .
[49] Martin Pätzold,et al. Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS) , 2012 .
[50] J. Fox,et al. MGS electron density profiles: Analysis and modeling of peak altitudes , 2012 .
[51] Matthew O. Fillingim,et al. Three-dimensional structure of the Martian nightside ionosphere: Predicted rates of impact ionization from Mars Global Surveyor magnetometer and electron reflectometer measurements of precipitating electrons , 2011 .
[52] F. Duru,et al. Dayside ionosphere of Mars: Empirical model based on data from the MARSIS instrument , 2011 .
[53] S. Barabash,et al. On the relation between plasma escape and the Martian crustal magnetic field , 2011 .
[54] Firdevs Duru,et al. Nightside ionosphere of Mars: Radar soundings by the Mars Express spacecraft , 2010 .
[55] R. Lundin,et al. Transterminator ion flow in the Martian ionosphere , 2010 .
[56] J. Waite,et al. Ion transport in Titan's upper atmosphere , 2010 .
[57] M. Acuna,et al. Dayside induced magnetic field in the ionosphere of Mars , 2010 .
[58] M. Lester,et al. Pumping out the atmosphere of Mars through solar wind pressure pulses , 2010 .
[59] R. Lin,et al. Nightside ionosphere of Mars: Modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization , 2009 .
[60] J. Fox,et al. MGS electron density profiles: Analysis of the peak magnitudes , 2009 .
[61] J. Fox. Morphology of the dayside ionosphere of Mars: Implications for ion outflows , 2008 .
[62] M. Lester,et al. Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields , 2008 .
[63] F. Duru,et al. Electron densities in the upper ionosphere of Mars from the excitation of electron plasma oscillations , 2008 .
[64] A. Ivanov,et al. Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes , 2007 .
[65] H. Zou,et al. Local plasma processes and enhanced electron densities in the lower ionosphere in magnetic cusp regions on Mars , 2007 .
[66] Jane L. Fox,et al. Near-terminator Venus ionosphere: How Chapman-esque? , 2007 .
[67] Stas Barabash,et al. Martian Atmospheric Erosion Rates , 2007, Science.
[68] Firdevs Duru,et al. Magnetically controlled structures in the ionosphere of Mars , 2006 .
[69] J. Fox,et al. Morphology of the Near-Terminator Martian Ionosphere: A Comparison of Models and Data , 2006 .
[70] D. Mitchell,et al. The magnetic field draping direction at Mars from April 1999 through August 2004 , 2006 .
[71] F. Duru,et al. Radar Soundings of the Ionosphere of Mars , 2005, Science.
[72] J. Fox. Response of the Martian thermosphere/ionosphere to enhanced fluxes of solar soft X rays , 2004 .
[73] D. Mitchell,et al. Mapping crustal magnetic fields at Mars using electron reflectometry , 2004 .
[74] Igor V. Sokolov,et al. Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars , 2004 .
[75] Mioara Mandea,et al. Crustal magnetic field of Mars , 2004 .
[76] M. Mendillo,et al. Modeling day-to-day ionospheric variability on Mars , 2003 .
[77] J. Fox. Effect of H2 on the Martian ionosphere: Implications for atmospheric evolution , 2003 .
[78] Kenneth G. Powell,et al. Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields , 2002 .
[79] G. Leonard Tyler,et al. Radio science observations with Mars Global Surveyor: Orbit insertion through one Mars year in mapping orbit , 2001 .
[80] D. Mitchell,et al. Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer , 2001 .
[81] J. Connerney,et al. Effects of magnetic anomalies discovered at Mars on the structure of the Martian ionosphere and solar wind interaction as follows from radio occultation experiments , 2000 .
[82] Ness,et al. Magnetic lineations in the ancient crust of mars , 1999, Science.
[83] Ness,et al. Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.
[84] A. Nagy,et al. Effect of the magnetic field on the energetics of Mars ionosphere , 1998 .
[85] Ness,et al. Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.
[86] J. Fox,et al. Upper limits to the outflow of ions at Mars: Implications for atmospheric evolution , 1997 .
[87] J. Kar,et al. On the outflow of O2 + ions at Mars , 1996 .
[88] Thomas E. Cravens,et al. A one-dimensional multispecies magnetohydrodynamic model of the dayside ionosphere of Mars , 1988 .
[89] A. Nagy,et al. A one‐dimensional time‐dependent model of the magnetized ionosphere of Venus , 1987 .
[90] C. Russell,et al. Growth and maintenance of large-scale magnetic fields in the dayside Venus ionosphere , 1984 .
[91] A. Nagy,et al. The evolution of large-scale magnetic fields in the ionosphere of Venus , 1984 .
[92] Thomas E. Cravens,et al. The Martian ionosphere in light of the Viking observations , 1978 .
[93] R. Schunk. Mathematical structure of transport equations for multispecies flows , 1977 .
[94] W. B. Hanson,et al. The Martian ionosphere as observed by the Viking retarding potential analyzers , 1977 .
[95] Min,et al. Comparison of model predictions for the composition of the ionosphere of Mars to MAVEN NGIMS data , 2015 .
[96] K. Hille. Neutral Gas and ION Mass Spectrometer , 2013 .
[97] F. Duru,et al. An overview of radar soundings of the martian ionosphere from the Mars Express spacecraft , 2008 .
[98] R. H. Comfort. The magnetic mirror force in plasma fluid Models , 1988 .
[99] C. Russell,et al. Time scales for the decay of induced large‐scale magnetic fields in the Venus ionosphere , 1984 .