The Morphology of the Topside Martian Ionosphere: Implications on Bulk Ion Flow

Prior to the Mars Atmosphere and Volatile Evolution mission, the only information on the composition of the Martian ionosphere came from the Viking Retarding Potential Analyzer data, revealing the presence of substantial ion outflow on the dayside of Mars. Extensive measurements made by the Mars Atmosphere and Volatile Evolution Neutral Gas and Ion Mass Spectrometer allow us to examine the morphology of the Martian ionosphere not only in unprecedented detail but also on both the dayside and the nightside of the planet. Above 300 km, various ionospheric species present a roughly constant density scale height around 100 km on the dayside and 180 km on the nightside. An evaluation of the ion force balance, appropriate for regions with near‐horizontal magnetic field lines, suggests the presence of supersonic ion outflow predominantly driven by the ambient magnetic pressure, with characteristic dayside and nightside flow velocities of 4 and 20 km/s, respectively, both referred to an altitude of 500 km. The corresponding total ion outflow rates are estimated to be 5 × 1025 s−1 on the dayside and 1 × 1025 s−1 on the nightside. The data also indicate a prominent variation with magnetic field orientation in that the ion distribution over regions with near‐vertical field lines tends to be more extended on the dayside but more concentrated on the nightside, as compared to regions with near‐horizontal field lines. These observations should have important implications on the pattern of ion dynamics in the vicinity of Mars.

[1]  D. Mitchell,et al.  Observations and Modeling of the Mars Low‐Altitude Ionospheric Response to the 10 September 2017 X‐Class Solar Flare , 2018, Geophysical Research Letters.

[2]  B. Jakosky,et al.  Magnetic Reconnection on Dayside Crustal Magnetic Fields at Mars: MAVEN Observations , 2018 .

[3]  A. Kopf,et al.  Shapes of Magnetically Controlled Electron Density Structures in the Dayside Martian Ionosphere , 2018 .

[4]  D. Mitchell,et al.  Ionizing Electrons on the Martian Nightside: Structure and Variability , 2018 .

[5]  T. Koskinen,et al.  The Impact of Crustal Magnetic Fields on the Thermal Structure of the Martian Upper Atmosphere , 2018 .

[6]  D. Mitchell,et al.  High‐Altitude Closed Magnetic Loops at Mars Observed by MAVEN , 2017 .

[7]  D. Mitchell,et al.  Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization , 2017, Geophysical research letters.

[8]  B. Jakosky,et al.  The Effect of Solar Wind Variations on the Escape of Oxygen Ions From Mars Through Different Channels: MAVEN Observations , 2017 .

[9]  Y. Ma,et al.  Estimates of Ionospheric Transport and Ion Loss at Mars , 2017 .

[10]  S. Barabash,et al.  Martian ionosphere observed by Mars Express. 2. Influence of solar irradiance on upper ionosphere and escape fluxes , 2017 .

[11]  D. Mitchell,et al.  Characterization of Low‐Altitude Nightside Martian Magnetic Topology Using Electron Pitch Angle Distributions , 2017 .

[12]  J. Forbes,et al.  Sources of Ionospheric Variability at Mars , 2017 .

[13]  Bruce M. Jakosky,et al.  Nightside ionosphere of Mars: Composition, vertical structure, and variability , 2017 .

[14]  B. Jakosky,et al.  Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars Atmosphere and Volatile EvolutioN mission observations , 2017 .

[15]  B. Jakosky,et al.  Martian low‐altitude magnetic topology deduced from MAVEN/SWEA observations , 2016 .

[16]  S. Asmar,et al.  Mars Express 10 years at Mars: Observations by the Mars Express Radio Science Experiment (MaRS) , 2016 .

[17]  M. Lester,et al.  The effect of the induced magnetic field on the electron density vertical profile of the Mars’ ionosphere: a Mars Express MARSIS radar data analysis and interpretation, a case study , 2016 .

[18]  B. Jakosky,et al.  Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data , 2016 .

[19]  B. Jakosky,et al.  Enhanced O2+ loss at Mars due to an ambipolar electric field from electron heating , 2016 .

[20]  D. Andrews,et al.  Martian ionosphere observed by Mars Express. 1. Influence of the crustal magnetic fields , 2016 .

[21]  Arnett,et al.  The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission , 2015 .

[22]  B. Jakosky,et al.  MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument , 2015 .

[23]  B. Jakosky,et al.  The spatial distribution of planetary ion fluxes near Mars observed by MAVEN , 2015 .

[24]  B. Jakosky,et al.  Comparison of model predictions for the composition of the ionosphere of Mars to MAVEN NGIMS data , 2015 .

[25]  B. Jakosky,et al.  Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations , 2015 .

[26]  B. Jakosky,et al.  MAVEN and the Mars Initial Reference Ionosphere model , 2015 .

[27]  Bruce M. Jakosky,et al.  Initial results from the MAVEN mission to Mars , 2015 .

[28]  B. Jakosky,et al.  Ionopause‐like density gradients in the Martian ionosphere: A first look with MAVEN , 2015 .

[29]  B. Jakosky,et al.  Water and water ions in the Martian thermosphere/ionosphere , 2015 .

[30]  B. Jakosky,et al.  Changes in the thermosphere and ionosphere of Mars from Viking to MAVEN , 2015 .

[31]  Bruce M. Jakosky,et al.  First measurements of composition and dynamics of the Martian ionosphere by MAVEN's Neutral Gas and Ion Mass Spectrometer , 2015 .

[32]  B. Jakosky,et al.  Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation , 2015, Geophysical research letters.

[33]  R. Ergun,et al.  The Langmuir Probe and Waves (LPW) Instrument for MAVEN , 2015 .

[34]  D. Andrews,et al.  MARSIS remote sounding of localized density structures in the dayside Martian ionosphere: A study of controlling parameters , 2015 .

[35]  R. Lillis,et al.  Electron impact ionization in the Martian atmosphere: Interplay between scattering and crustal magnetic field effects , 2015 .

[36]  S. Barabash,et al.  The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations , 2015 .

[37]  B. Jakosky,et al.  Metallic ions in the upper atmosphere of Mars from the passage of comet C/2013 A1 (Siding Spring) , 2015 .

[38]  H. Opgenoorth,et al.  Control of the topside Martian ionosphere by crustal magnetic fields , 2015 .

[39]  J. Cui,et al.  Day‐to‐night transport in the Martian ionosphere: Implications from total electron content measurements , 2015 .

[40]  Ronald J. Oliversen,et al.  First results of the MAVEN magnetic field investigation , 2015 .

[41]  M. Mendillo,et al.  Interpreting Mars ionospheric anomalies over crustal magnetic field regions using a 2‐D ionospheric model , 2015 .

[42]  Christopher T. Russell,et al.  Effects of crustal field rotation on the solar wind plasma interaction with Mars , 2014 .

[43]  H. Opgenoorth,et al.  Oblique reflections in the Mars Express MARSIS data set: Stable density structures in the Martian ionosphere , 2014 .

[44]  S. Barabash,et al.  Solar cycle effects on the ion escape from Mars , 2013 .

[45]  D. Gurnett,et al.  A new semiempirical model of the peak electron density of the Martian ionosphere , 2013 .

[46]  Francisco Gonzalez-Galindo,et al.  Three‐dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km , 2013 .

[47]  Robert J. Lillis,et al.  Nightside electron precipitation at Mars: Geographic variability and dependence on solar wind conditions , 2013 .

[48]  M. Mendillo,et al.  The composition of Mars' topside ionosphere: Effects of hydrogen , 2013 .

[49]  Martin Pätzold,et al.  Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS) , 2012 .

[50]  J. Fox,et al.  MGS electron density profiles: Analysis and modeling of peak altitudes , 2012 .

[51]  Matthew O. Fillingim,et al.  Three-dimensional structure of the Martian nightside ionosphere: Predicted rates of impact ionization from Mars Global Surveyor magnetometer and electron reflectometer measurements of precipitating electrons , 2011 .

[52]  F. Duru,et al.  Dayside ionosphere of Mars: Empirical model based on data from the MARSIS instrument , 2011 .

[53]  S. Barabash,et al.  On the relation between plasma escape and the Martian crustal magnetic field , 2011 .

[54]  Firdevs Duru,et al.  Nightside ionosphere of Mars: Radar soundings by the Mars Express spacecraft , 2010 .

[55]  R. Lundin,et al.  Transterminator ion flow in the Martian ionosphere , 2010 .

[56]  J. Waite,et al.  Ion transport in Titan's upper atmosphere , 2010 .

[57]  M. Acuna,et al.  Dayside induced magnetic field in the ionosphere of Mars , 2010 .

[58]  M. Lester,et al.  Pumping out the atmosphere of Mars through solar wind pressure pulses , 2010 .

[59]  R. Lin,et al.  Nightside ionosphere of Mars: Modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization , 2009 .

[60]  J. Fox,et al.  MGS electron density profiles: Analysis of the peak magnitudes , 2009 .

[61]  J. Fox Morphology of the dayside ionosphere of Mars: Implications for ion outflows , 2008 .

[62]  M. Lester,et al.  Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields , 2008 .

[63]  F. Duru,et al.  Electron densities in the upper ionosphere of Mars from the excitation of electron plasma oscillations , 2008 .

[64]  A. Ivanov,et al.  Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes , 2007 .

[65]  H. Zou,et al.  Local plasma processes and enhanced electron densities in the lower ionosphere in magnetic cusp regions on Mars , 2007 .

[66]  Jane L. Fox,et al.  Near-terminator Venus ionosphere: How Chapman-esque? , 2007 .

[67]  Stas Barabash,et al.  Martian Atmospheric Erosion Rates , 2007, Science.

[68]  Firdevs Duru,et al.  Magnetically controlled structures in the ionosphere of Mars , 2006 .

[69]  J. Fox,et al.  Morphology of the Near-Terminator Martian Ionosphere: A Comparison of Models and Data , 2006 .

[70]  D. Mitchell,et al.  The magnetic field draping direction at Mars from April 1999 through August 2004 , 2006 .

[71]  F. Duru,et al.  Radar Soundings of the Ionosphere of Mars , 2005, Science.

[72]  J. Fox Response of the Martian thermosphere/ionosphere to enhanced fluxes of solar soft X rays , 2004 .

[73]  D. Mitchell,et al.  Mapping crustal magnetic fields at Mars using electron reflectometry , 2004 .

[74]  Igor V. Sokolov,et al.  Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars , 2004 .

[75]  Mioara Mandea,et al.  Crustal magnetic field of Mars , 2004 .

[76]  M. Mendillo,et al.  Modeling day-to-day ionospheric variability on Mars , 2003 .

[77]  J. Fox Effect of H2 on the Martian ionosphere: Implications for atmospheric evolution , 2003 .

[78]  Kenneth G. Powell,et al.  Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields , 2002 .

[79]  G. Leonard Tyler,et al.  Radio science observations with Mars Global Surveyor: Orbit insertion through one Mars year in mapping orbit , 2001 .

[80]  D. Mitchell,et al.  Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer , 2001 .

[81]  J. Connerney,et al.  Effects of magnetic anomalies discovered at Mars on the structure of the Martian ionosphere and solar wind interaction as follows from radio occultation experiments , 2000 .

[82]  Ness,et al.  Magnetic lineations in the ancient crust of mars , 1999, Science.

[83]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[84]  A. Nagy,et al.  Effect of the magnetic field on the energetics of Mars ionosphere , 1998 .

[85]  Ness,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.

[86]  J. Fox,et al.  Upper limits to the outflow of ions at Mars: Implications for atmospheric evolution , 1997 .

[87]  J. Kar,et al.  On the outflow of O2 + ions at Mars , 1996 .

[88]  Thomas E. Cravens,et al.  A one-dimensional multispecies magnetohydrodynamic model of the dayside ionosphere of Mars , 1988 .

[89]  A. Nagy,et al.  A one‐dimensional time‐dependent model of the magnetized ionosphere of Venus , 1987 .

[90]  C. Russell,et al.  Growth and maintenance of large-scale magnetic fields in the dayside Venus ionosphere , 1984 .

[91]  A. Nagy,et al.  The evolution of large-scale magnetic fields in the ionosphere of Venus , 1984 .

[92]  Thomas E. Cravens,et al.  The Martian ionosphere in light of the Viking observations , 1978 .

[93]  R. Schunk Mathematical structure of transport equations for multispecies flows , 1977 .

[94]  W. B. Hanson,et al.  The Martian ionosphere as observed by the Viking retarding potential analyzers , 1977 .

[95]  Min,et al.  Comparison of model predictions for the composition of the ionosphere of Mars to MAVEN NGIMS data , 2015 .

[96]  K. Hille Neutral Gas and ION Mass Spectrometer , 2013 .

[97]  F. Duru,et al.  An overview of radar soundings of the martian ionosphere from the Mars Express spacecraft , 2008 .

[98]  R. H. Comfort The magnetic mirror force in plasma fluid Models , 1988 .

[99]  C. Russell,et al.  Time scales for the decay of induced large‐scale magnetic fields in the Venus ionosphere , 1984 .