Recent progress in gold nanoparticle-based non-volatile memory devices

[1]  Jang-Sik Lee,et al.  Flexible organic transistor memory devices. , 2010, Nano letters.

[2]  Jang‐Sik Lee,et al.  Organic Field-Effect Transistor-Based Nonvolatile Memory Devices Having Controlled Metallic Nanoparticle/Polymer Composite Layers , 2010 .

[3]  Soo-Jin Kim,et al.  Organic-Transistor-Based Nano-Floating-Gate Memory Devices Having Multistack Charge-Trapping Layers , 2010, IEEE Electron Device Letters.

[4]  Soo-Jin Kim,et al.  Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers , 2010 .

[5]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[6]  Sangsig Kim,et al.  Electrical Characteristics of Hybrid Nanoparticle–Nanowire Devices , 2009, IEEE Transactions on Nanotechnology.

[7]  C. Breach,et al.  Intermetallic growth in gold ball bonds aged at 175°C: comparison between two 4N wires of different chemistry , 2009 .

[8]  Elodie Boisselier,et al.  Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. , 2009, Chemical Society reviews.

[9]  Christopher Pearson,et al.  A pentacene-based organic thin film memory transistor , 2009 .

[10]  G. Lojen,et al.  The influence of the microstructure of high noble gold-platinum dental alloys on their corrosion and biocompatibility in vitro , 2009 .

[11]  Sungho Kim,et al.  Designed Workfunction Engineering of Double-Stacked Metal Nanocrystals for Nonvolatile Memory Application , 2009 .

[12]  Jaegab Lee,et al.  Tunable Memory Characteristics of Nanostructured, Nonvolatile Charge Trap Memory Devices Based on a Binary Mixture of Metal Nanoparticles as a Charge Trapping Layer , 2009 .

[13]  Jang‐Sik Lee,et al.  Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices , 2008 .

[14]  M. Scurrell,et al.  An unconventional Au/TiO2 PROX system for complete removal of CO from non-reformate hydrogen , 2008 .

[15]  Jyun-Yi Wu,et al.  Bandgap engineering of tunnel oxide with multistacked layers of Al2O3/HfO2/SiO2 for Au-nanocrystal memory application , 2008 .

[16]  Hyung‐Il Kim,et al.  Hardening and overaging Mechanisms in an Au-Ag-Cu-Pd alloy with In additions , 2008 .

[17]  Ananth Dodabalapur,et al.  Non‐Volatile Organic Memory Applications Enabled by In Situ Synthesis of Gold Nanoparticles in a Self‐Assembled Block Copolymer , 2008 .

[18]  W. Guan,et al.  Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric , 2008 .

[19]  Study of tunneling mechanism of Au nanocrystals in HfAlO matrix as floating gate memory , 2008 .

[20]  P. Perriat,et al.  Two examples of nanostructured gold surfaces as biosensors. Surface-enhanced chemiluminescence and double detection by surface plasmon resonance and luminescence , 2008 .

[21]  P. Kooyman,et al.  Au-Fe system: application in electro-catalysis , 2008 .

[22]  H. Varela,et al.  Catalytic oxidation of ethanol on gold electrode in alkaline media , 2008 .

[23]  C. Gamrat,et al.  Gold nanoparticle-pentacene memory-transistors , 2008, 0802.2633.

[24]  F. Caruso,et al.  Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. , 2007, Nature nanotechnology.

[25]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[26]  Jaegab Lee,et al.  Nonvolatile nanocrystal charge trap flash memory devices using a micellar route to ordered arrays of cobalt nanocrystals , 2007 .

[27]  Kinam Kim,et al.  Memory technology in the future , 2007 .

[28]  C. Yoon,et al.  Formation of gold nanoparticles embedded in a polyimide film for nanofloating gate memory , 2007 .

[29]  A. Lin,et al.  Electrochemical oxidation of dissolved carbon monoxide on gold electrode in alkaline medium , 2007 .

[30]  C. Zhong,et al.  Molecularly-mediated assembly of gold nanoparticles , 2007 .

[31]  Wei Lin Leong,et al.  Charging phenomena in pentacene-gold nanoparticle memory device , 2007 .

[32]  Chaehyun Lim,et al.  Nanoscale floating-gate characteristics of colloidal Au nanoparticles electrostatically assembled on Si nanowires , 2006 .

[33]  Sangsig Kim,et al.  Capacitance characteristics of MOS capacitors embedded with colloidally synthesized gold nanoparticles , 2006 .

[34]  Yi Su,et al.  Memory effect of a polymer thin-film transistor with self-assembled gold nanoparticles in the gate dielectric , 2006, IEEE Transactions on Nanotechnology.

[35]  H. Hamann,et al.  Ultra-high-density phase-change storage and memory , 2006, Nature materials.

[36]  Kinam Kim,et al.  Data Retention Characteristics of Nitride-Based Charge Trap Memory Devices with High-k Dielectrics and High-Work-Function Metal Gates for Multi-Gigabit Flash Memory , 2006 .

[37]  C. Pearson,et al.  Metal nano-floating gate memory devices fabricated at low temperature , 2006 .

[38]  E. Kan,et al.  Carbon nanotube-based nonvolatile memory with charge storage in metal nanocrystals , 2005 .

[39]  Geoffrey B. Smith,et al.  Electrochemical capacitance of mesoporous gold , 2005 .

[40]  Edwin C. Kan,et al.  Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile memory applications , 2005 .

[41]  A. Fazio,et al.  Flash Memory Scaling , 2004 .

[42]  C. Corti,et al.  Commercial aspects of gold applications: From materials science to chemical science , 2004 .

[43]  L. Burke,et al.  Scope for new applications for gold arising from the electrocatalytic behaviour of its metastable surface states , 2004 .

[44]  Timothy W. Ellis,et al.  The future of gold in electronics , 2004 .

[45]  Chang-gyu Hwang,et al.  Nanotechnology enables a new memory growth model , 2003 .

[46]  C. Pearson,et al.  Hybrid silicon-organic nanoparticle memory device , 2003 .

[47]  Roberto Bez,et al.  Introduction to flash memory , 2003, Proc. IEEE.

[48]  G. Pei,et al.  Metal nanocrystal memories. I. Device design and fabrication , 2002 .

[49]  G. Pei,et al.  Metal nanocrystal memories-part II: electrical characteristics , 2002 .

[50]  J. De Blauwe,et al.  Nanocrystal nonvolatile memory devices , 2002 .

[51]  Ya-Chin King,et al.  Charge-trap memory device fabricated by oxidation of Si/sub 1-x/Ge/sub x/ , 2001 .

[52]  J. Bu,et al.  Design considerations in scaled SONOS nonvolatile memory devices , 2001 .

[53]  Pascal Normand,et al.  Charge storage and interface states effects in Si-nanocrystal memory obtained using low-energy Si+ implantation and annealing , 2000 .

[54]  B. Eitan,et al.  NROM: A novel localized trapping, 2-bit nonvolatile memory cell , 2000, IEEE Electron Device Letters.

[55]  C. Simons,et al.  Doped and low-alloyed gold bonding wires , 2000 .

[56]  J. Bu,et al.  On the go with SONOS , 2000 .

[57]  Carla Golla,et al.  Flash Memories , 1999 .

[58]  Piero Olivo,et al.  Flash memory cells-an overview , 1997, Proc. IEEE.

[59]  Sandip Tiwari,et al.  Fast and long retention-time nano-crystal memory , 1996 .

[60]  M. C. Scott,et al.  Fatigue-free ferroelectric capacitors with platinum electrodes , 1995, Nature.

[61]  Tetsuo Endoh,et al.  Reliability issues of flash memory cells , 1993, Proc. IEEE.