UPR : Usage-based Page Ranking for Web Personalization

Recommendation algorithms aim at proposing “next” pages to a user based on her navigational behavior. In the vast majority of related algorithms, only the usage data are used to produce recommendations. We claim that taking also into account the web structure and using link analysis algorithms ameliorates the quality of recommendations. In this paper we present UPR, a personalization algorithm which combines usage data and link analysis techniques for ranking and recommending web pages to the end user. Using the web site’s structure and previously recorded user sessions we produce personalized navigational subgraphs (prNGs) to be used for applying UPR. Experimental results show that the accuracy of the generated recommendations is superior to pure usage-based approaches.

[1]  Hsinchun Chen,et al.  Link prediction approach to collaborative filtering , 2005, Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL '05).

[2]  George Karypis,et al.  Selective Markov models for predicting Web page accesses , 2004, TOIT.

[3]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[4]  Padhraic Smyth,et al.  A general probabilistic framework for clustering individuals and objects , 2000, KDD '00.

[5]  R. Forthofer,et al.  Rank Correlation Methods , 1981 .

[6]  Personalizing PageRank Based on Domain Profiles , 2004 .

[7]  Mark Levene,et al.  Data Mining of User Navigation Patterns , 1999, WEBKDD.

[8]  Jun Hong,et al.  Using Markov models for web site link prediction , 2002, HYPERTEXT '02.

[9]  Padhraic Smyth,et al.  Visualization of navigation patterns on a Web site using model-based clustering , 2000, KDD '00.

[10]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[11]  M. Eirinaki WEB MINING : A ROADMAP , 2007 .

[12]  Iraklis Varlamis,et al.  SEWeP: using site semantics and a taxonomy to enhance the Web personalization process , 2003, KDD '03.

[13]  MAGDALINI EIRINAKI,et al.  Web mining for web personalization , 2003, TOIT.

[14]  Gene H. Golub,et al.  Extrapolation methods for accelerating PageRank computations , 2003, WWW '03.

[15]  Taher H. Haveliwala,et al.  Adaptive methods for the computation of PageRank , 2004 .

[16]  Neoklis Polyzotis,et al.  Approximate XML query answers , 2004, SIGMOD '04.

[17]  Ramesh R. Sarukkai,et al.  Link prediction and path analysis using Markov chains , 2000, Comput. Networks.

[18]  Matthew Richardson,et al.  The Intelligent surfer: Probabilistic Combination of Link and Content Information in PageRank , 2001, NIPS.

[19]  Mark Hansen,et al.  Predicting Web Users' Next Access Based on Log Data , 2003 .

[20]  Mark Levene,et al.  Computing the Entropy of User Navigation in the Web , 2003, Int. J. Inf. Technol. Decis. Mak..

[21]  Neoklis Polyzotis,et al.  Structure and Value Synopses for XML Data Graphs , 2002, VLDB.

[22]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[23]  Myra Spiliopoulou,et al.  Revised Papers from the International Workshop on Web Usage Analysis and User Profiling , 1999 .

[24]  Bamshad Mobasher,et al.  A Hybrid Web Personalization Model Based on Site Connectivity , 2003 .