Dimension dependent hypercontractivity for Gaussian kernels
暂无分享,去创建一个
[1] L. Gross. LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .
[2] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[3] Logarithmic Sobolev inequalities: Regularizing effect of Lévy operators and asymptotic convergence in the Lévy–Fokker–Planck equation , 2008, 0809.2654.
[4] Djalil CHAFAÏ. Entropies, convexity, and functional inequalities : On Phi-entropies and Phi-Sobolev inequalities , 2004 .
[5] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[6] D. Bakry,et al. Around Nash Inequalities , 2010 .
[7] S. Yau,et al. On the parabolic kernel of the Schrödinger operator , 1986 .
[8] Subelliptic Li-Yau estimates on three dimensional model spaces , 2008, 0806.2547.
[9] tballest. Séminaire de probabilités , 2013 .
[10] P. Meyer,et al. Sur les inegalites de Sobolev logarithmiques. I , 1982 .
[11] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .
[12] On logarithmic Sobolev inequalities for continuous time random walks on graphs , 2000 .
[13] Michel Ledoux,et al. A logarithmic Sobolev form of the Li-Yau parabolic inequality , 2006 .
[14] D. Bakry,et al. Weighted Nash Inequalities , 2010, 1004.3456.
[15] I. Gentil. The general optimal Lp-Euclidean logarithmic Sobolev inequality by Hamilton–Jacobi equations , 2003 .
[16] Christian L'eonard,et al. Transport Inequalities. A Survey , 2010, 1003.3852.
[17] C. Villani. The founding fathers of optimal transport , 2009 .
[18] D. Applebaum. Lévy Processes and Stochastic Calculus: Preface , 2009 .
[19] M. Talagrand. Transportation cost for Gaussian and other product measures , 1996 .
[20] Dominique Bakry,et al. Functional Inequalities for Markov semigroups , 2009 .
[21] C. Villani. Optimal Transport: Old and New , 2008 .
[22] E. Lieb. Gaussian kernels have only Gaussian maximizers , 1990 .
[23] I. Gentil. Ultracontractive bounds on Hamilton–Jacobi solutions , 2002 .
[24] S. Bobkov,et al. Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .
[25] S. Bobkov,et al. Hypercontractivity of Hamilton-Jacobi equations , 2001 .
[26] Liming Wu,et al. A new modified logarithmic Sobolev inequality for Poisson point processes and several applications , 2000 .