Frequency stabilization to 6 [times] 10-16 via spectral-hole burning

Researchers demonstrate two-stage laser stabilization based on a combination of Fabry–Perot and spectral-hole burning techniques. The laser was first pre-stabilized using Fabry–Perot cavities and then modulated to address a spectral-hole pattern in Eu3+:Y2SiO5. Taking advantage of the low sensitivity of the spectral holes to environmental perturbations, the researchers obtained a fractional frequency stability of 6 × 10−16

[1]  J. Torgerson,et al.  Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. , 2010, Physical review letters.

[2]  A. Ludlow,et al.  Making optical atomic clocks more stable with 10-16-level laser stabilization , 2011, 1101.1351.

[3]  Andreas Walther,et al.  Understanding laser stabilization using spectral hole burning , 2007 .

[4]  T Zelevinsky,et al.  New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. , 2008, Physical review letters.

[5]  D. Wineland,et al.  Optical Clocks and Relativity , 2010, Science.

[6]  Sun,et al.  Ultraslow optical dephasing in Eu3+:Y2SiO5. , 1994, Physical Review Letters.

[7]  L. Hollberg,et al.  Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references. , 2005, Optics letters.

[8]  Jun Ye,et al.  Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers , 2006 .

[9]  Andrew G. Glen,et al.  APPL , 2001 .

[10]  Mark Notcutt,et al.  Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments. , 2011, Optics express.

[11]  M. Lours,et al.  Sub-100 attoseconds stability optics-to-microwave synchronization , 2010 .

[12]  Fritz Riehle,et al.  Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser , 2006 .

[13]  M. Kirchner,et al.  Generation of ultrastable microwaves via optical frequency division , 2011, 1101.3616.

[14]  Kenji Numata,et al.  Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.

[15]  Flavio C. Cruz,et al.  VISIBLE LASERS WITH SUBHERTZ LINEWIDTHS , 1999 .

[16]  G. J. Dick,et al.  Local Oscillator Induced Instabilities in Trapped Ion Frequency Standards , 1987 .

[17]  R. Shelby,et al.  Measurement of the Anomalous Nuclear Magnetic Moment of Trivalent Europium , 1981 .

[18]  G. Pryde,et al.  Programmable laser frequency stabilization at 1523 nm by use of persistent spectral hole burning. , 2003, Optics letters.

[19]  J. Carlsten,et al.  Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning. , 1999, Optics letters.

[20]  Ekkehard Peik,et al.  Nuclear laser spectroscopy of the 3.5 eV transition in Th-229 , 2003 .

[21]  J. Longdell,et al.  Investigation of static electric dipole-dipole coupling induced optical inhomogeneous broadening in Eu3+:Y2SiO5 , 2004 .

[22]  P. Murray,et al.  Potential mechanical loss mechanisms in bulk materials for future gravitational wave detectors , 2010, 1003.1613.

[23]  Patrick Gill,et al.  Vibration insensitive optical cavity , 2007 .

[24]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[25]  G. Aeppli,et al.  Proceedings of the International School of Physics Enrico Fermi , 1994 .

[26]  Jun Ye,et al.  Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. , 2005, Optics letters.

[27]  N. Uesugi,et al.  Ultralong optical dephasing time in Eu(3+):Y(2)SiO(5). , 1991, Optics letters.

[28]  D. Leibrandt,et al.  Measurement and real-time cancellation of vibration-induced phase noise in a cavity-stabilized laser. , 2010, Optics express.

[29]  Roger M. Macfarlane,et al.  Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu 3 + : Y 2 SiO 5 , 2003 .

[30]  P. Lemonde,et al.  Ultrastable lasers based on vibration insensitive cavities , 2009, 0901.4717.

[31]  Am Stoneham,et al.  Shapes of Inhomogeneously Broadened Resonance Lines in Solids (Invited Talk) , 1969 .

[32]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[33]  M. Birkinshaw,et al.  Background Microwave Radiation and Intracluster Cosmology, Proceedings of the International School of Physics "Enrico Fermi" , 2004 .

[34]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.