Recursive parameter identification of Hammerstein-Wiener systems with measurement noise

Abstract A recursive algorithm is proposed in this paper to identify Hammerstein–Wiener systems with heteroscedastic measurement noise. Based on the parameterization model of Hammerstein–Wiener systems, the algorithm is derived by minimizing the expectation of the sum of squared parameter estimation errors. By replacing the immeasurable internal variables with their estimations, the need for the commonly used invertibility assumption on the output block can be eliminated. The convergence of the proposed algorithm is also studied and conditions for achieving the uniform convergence of the parameter estimation are determined. The validity of this algorithm is demonstrated with three simulation examples, including a practical electric arc furnace system case.

[1]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[2]  Feng Ding,et al.  Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems , 2008, Comput. Math. Appl..

[3]  J. MacArthur,et al.  A new approach for nonlinear process identification using orthonormal bases and ordinal splines , 2012 .

[4]  Lars-Henning Zetterberg,et al.  Identification of certain time-varying nonlinear Wiener and Hammerstein systems , 2001, IEEE Trans. Signal Process..

[5]  O. Nelles Nonlinear System Identification , 2001 .

[6]  Plamen P. Angelov Evolving fuzzy systems , 2008, Scholarpedia.

[7]  Nicholas Kalouptsidis,et al.  Blind identification of second order Hammerstein series , 2000, 2000 10th European Signal Processing Conference.

[8]  Edwin Lughofer,et al.  Learning in Non-Stationary Environments: Methods and Applications , 2012 .

[9]  Feng Ding,et al.  Hierarchical Least Squares Estimation Algorithm for Hammerstein–Wiener Systems , 2012, IEEE Signal Processing Letters.

[10]  Er-Wei Bai,et al.  A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[11]  Johan Schoukens,et al.  Hammerstein-Wiener system estimator initialization , 2002, Autom..

[12]  Lei Li,et al.  A direct adaptive controller for EAF electrode regulator system using neural networks , 2012, Neurocomputing.

[13]  Tokunbo Ogunfunmi,et al.  An affine projection-based algorithm for identification of nonlinear Hammerstein systems , 2010, Signal Process..

[14]  Feng Ding,et al.  Identification methods for Hammerstein nonlinear systems , 2011, Digit. Signal Process..

[15]  E. Bai An optimal two stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998 .

[16]  Tamer Basar,et al.  Analysis of Recursive Stochastic Algorithms , 2001 .

[17]  Feng Ding,et al.  Performance analysis of stochastic gradient algorithms under weak conditions , 2008, Science in China Series F: Information Sciences.

[18]  Minyue Fu,et al.  A blind approach to Hammerstein model identification , 2002, IEEE Trans. Signal Process..

[19]  Yucai Zhu,et al.  Estimation of an N-L-N Hammerstein-Wiener model , 2002, Autom..

[20]  Nikola Kasabov,et al.  Evolving Connectionist Systems: The Knowledge Engineering Approach , 2007 .

[21]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[22]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[23]  Lennart Ljung,et al.  Identification of Hammerstein-Wiener models , 2013, Autom..

[24]  G. R. Averin The Hammerstein–Wiener Model for Identification of Stochastic Systems , 2003 .

[25]  Edwin Lughofer,et al.  Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications , 2011, Studies in Fuzziness and Soft Computing.

[26]  Konrad Reif,et al.  Stochastic stability of the discrete-time extended Kalman filter , 1999, IEEE Trans. Autom. Control..

[27]  Jozef Vörös,et al.  Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities , 2007, Syst. Control. Lett..

[28]  Feng Yu,et al.  Recursive identification for Hammerstein–Wiener systems with dead-zone input nonlinearity , 2013 .

[29]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[30]  Feng Ding,et al.  Auxiliary model-based least-squares identification methods for Hammerstein output-error systems , 2007, Syst. Control. Lett..

[31]  G. Bolkvadze Hammerstein Models for Identification of Stochastic Systems , 2003 .

[32]  Mohamed Boutayeb,et al.  A strong tracking extended Kalman observer for nonlinear discrete-time systems , 1999, IEEE Trans. Autom. Control..

[33]  Israel Cohen,et al.  Simultaneous parameter estimation and state smoothing of complex GARCH process in the presence of additive noise , 2010, Signal Process..

[34]  Kang Li,et al.  Convergence of the iterative algorithm for a general Hammerstein system identification , 2010, Autom..

[35]  Feng Ding,et al.  Least squares based and gradient based iterative identification for Wiener nonlinear systems , 2011, Signal Process..