New background quasars in the vicinity of the Andromeda Galaxy discovered with the Guoshoujing Telescope (LAMOST)

We present preliminary analyses of spectra of quasar candidates in two Guoshoujing Telescope (GSJT, formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope - LAMOST) test fields near M 31 where one is close to the optical center of the disk and the other is towards the northeastern outskirts of the halo, obtained during the early stage of the GSJT commissioning in the last season of 2009. Both fields contain background low-redshift quasar candidates selected from the SDSS photometry. In total, 14 new quasars with redshifts up to 2 and i magnitudes between 16.7 and 19.2, are discovered, including 7 within the 2.5° central region of M 31. We briefly discuss the potential applications of these newly discovered bright quasars.

[1]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[2]  R. Ibata,et al.  On the Accretion Origin of a Vast Extended Stellar Disk around the Andromeda Galaxy , 2005 .

[3]  A. J. Drake,et al.  Variability-selected Quasars in MACHO Project Magellanic Cloud Fields , 2002, astro-ph/0209513.

[4]  J. Blades,et al.  Absorption Spectrum of the Z = 3.78 QSO 2000-330. II. The Redshift and Equivalent Width Distributions of Primordial Hydrogen Clouds , 1986 .

[5]  Oxford,et al.  Emission linewidths and QSO black hole mass estimates from the 2dF QSO Redshift Survey , 2003, astro-ph/0304541.

[6]  J. Blades,et al.  A search for QSOs in the fields of nearby galaxies – I. NGC 253, NGC 5236 and NGC 6744 , 1984 .

[7]  D. Crampton,et al.  Probes for Nearby Galaxies , 1997, astro-ph/9710248.

[8]  A. M. Read,et al.  The second ROSAT PSPC survey of M 31 and the complete ROSAT PSPC source list , 2001 .

[9]  S G Wang,et al.  Special configuration of a very large Schmidt telescope for extensive astronomical spectroscopic observation. , 1996, Applied optics.

[10]  Xiangqun Cui,et al.  Large-sky-area multiobject fiber spectroscopic telescope (LAMOST) and its key technology , 1998, Astronomical Telescopes and Instrumentation.

[11]  J. Blades,et al.  Interstellar MG II Absorption Lines from Low-Redshift Galaxies , 1995 .

[12]  M. Raddick,et al.  The Fifth Data Release of the Sloan Digital Sky Survey , 2007, 0707.3380.

[13]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[14]  G. Vaucouleurs,et al.  Third Reference Catalogue of Bright Galaxies , 2012 .

[15]  R. Ibata,et al.  The Haunted Halos of Andromeda and Triangulum: A Panorama of Galaxy Formation in Action , 2007, 0704.1318.

[16]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[17]  Hai Wang,et al.  Experiment system of LAMOST active optics , 2004, SPIE Astronomical Telescopes + Instrumentation.

[18]  Felix J. Lockman,et al.  On the Continuing Formation of the Andromeda Galaxy: Detection of H I Clouds in the M31 Halo , 2003, astro-ph/0311571.

[19]  Proper Motion of the Large Magellanic Cloud using QSOs as an Inertial Reference System , 2000 .

[20]  Chao Zhai,et al.  Parallel controllable optical fiber positioning system for LAMOST , 1998, Astronomical Telescopes and Instrumentation.

[21]  Annette Ferguson,et al.  A Minor-Axis Surface Brightness Profile for M31 , 2005, astro-ph/0505077.

[22]  Harlow Shapley,et al.  Reference catalogue of bright galaxies , 1964 .

[23]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey — I. The optical luminosity function of quasi-stellar objects , 2000 .

[24]  Christopher G. Tinney,et al.  QSOs behind the nearest Milky Way satellite galaxies , 1997 .

[25]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[26]  A. S. Monk,et al.  A search for QSOs in the fields of nearby galaxies – III. NGC 1291, Fornax, A1008–04, NGC 3109, NGC 3115, NGC 4038/9, NGC 5170, NGC 5236, NGC 5364, NGC 5426/7 and Grus , 1988 .

[27]  Nial R. Tanvir,et al.  Distances and metallicities for 17 Local Group galaxies , 2005 .

[28]  Norbert Kappelmann,et al.  WSO-UV—ultraviolet mission for the next decade , 2009 .

[29]  Yongheng Zhao Observatory Control System of the LAMOST , 2000, Astronomical Telescopes and Instrumentation.

[30]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey - I. The Optical QSO Luminosity Function , 2000 .

[31]  Z. Haiman,et al.  Determining the Redshift of Reionization From the Spectra of High-Redshift Sources , 1998, astro-ph/9807070.

[32]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[33]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[34]  P. Groot,et al.  Variability-selected Quasars behind the Small Magellanic Cloud , 2002, astro-ph/0210601.

[35]  John P. Huchra,et al.  Extragalactic globular clusters. II, The M31 globular cluster system , 1991 .

[36]  Yong-Heng Zhao,et al.  Design and implementation of the spectra reduction and analysis software for LAMOST Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[37]  A. Dobrzycki,et al.  Discovery of four X-ray quasars behind the Large Magellanic Cloud , 2002 .

[38]  Norbert Kappelmann,et al.  World space observatory-ultraviolet among UV missions of the coming years , 2011 .

[39]  M. Irwin,et al.  The remnants of galaxy formation from a panoramic survey of the region around M31 , 2009, Nature.

[40]  Brandon University,et al.  H i KINEMATICS AND DYNAMICS OF MESSIER 31 , 2009, 0909.3846.

[41]  R. Beaton,et al.  THE SPLASH SURVEY: A SPECTROSCOPIC PORTRAIT OF ANDROMEDA’S GIANT SOUTHERN STREAM , 2009, 0909.4540.