Space-efficient recognition of sparse self-reducible languages

Mahaney and others have shown that sparse self-reducible sets have time-efficient algorithms, and have concluded that it is unlikely that NP has sparse complete sets. Mahaney's work, intuition, and a 1978 conjecture of Hartmanis notwithstanding, nothing has been known about the density of complete sets for feasible classes until now. This paper shows that sparse self-reducible sets have space-efficient algorithms, and in many cases, even have time-space-efficient algorithms. We conclude that NL, NCk, ACk, LOG(DCFL), LOG(CFL), and P lack complete (or even Turing-hard) sets of low density unless implausible complexity class inclusions hold. In particular, if NL (respectively P,βk, or NP) has a polylog-sparse logspace-hard set, then NL⊑SC (respectively P⊑SC,βk, or PH⊑SC), and if P has subpolynomially sparse logspace-hard sets, then P≠PSPACE.

[1]  Kurt Mehlhorn,et al.  The Recognition of Deterministic CFL's in Small Time and Space , 1983, Inf. Control..

[2]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[3]  José L. Balcázar Logspace self-reducibility , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[4]  R.E. Ladner,et al.  A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..

[5]  Stephen A. Cook,et al.  Deterministic CFL's are accepted simultaneously in polynomial time and log squared space , 1979, STOC.

[6]  Walter L. Ruzzo On Uniform Circuit Complexity , 1981, J. Comput. Syst. Sci..

[7]  Osamu Watanabe On ≤1-ttp-Sparseness and Nondeterministic Complexity Classes (Extended Abstract) , 1988, ICALP.

[8]  Piotr Berman Relationship Between Density and Deterministic Complexity of NP-Complete Languages , 1978, ICALP.

[9]  Patrick C. Fischer,et al.  Refining Nondeterminism in Relativized Polynomial-Time Bounded Computations , 1980, SIAM J. Comput..

[10]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[11]  José L. Balcázar Self-Reducibility , 1990, J. Comput. Syst. Sci..

[12]  Luc Longpré,et al.  Hard Promise Problems and Nonuniform Complexity , 1993, Theor. Comput. Sci..

[13]  Richard Edwin Stearns,et al.  Hierarchies of memory limited computations , 1965, SWCT.

[14]  Richard Edwin Stearns,et al.  Memory bounds for recognition of context-free and context-sensitive languages , 1965, SWCT.

[15]  Eric Allender Limitations of the upward separation technique , 2005, Mathematical systems theory.

[16]  Esko Ukkonen Two Results on Polynomial Time Truth-Table Reductions to Sparse Sets , 1983, SIAM J. Comput..

[17]  Neil Immerman,et al.  Sparse Sets in NP-P: EXPTIME versus NEXPTIME , 1985, Inf. Control..

[18]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[19]  Allan Borodin,et al.  Two Applications of Inductive Counting for Complementation Problems , 1989, SIAM J. Comput..

[20]  Ker-I Ko,et al.  On Circuit-Size Complexity and the Low Hierarchy in NP , 1985, SIAM J. Comput..

[21]  Osamu Watanabe On Polynomial Time One-Truth-Table Reducibility to a Sparse Set , 1992, J. Comput. Syst. Sci..

[22]  Nicholas Pippenger,et al.  On simultaneous resource bounds , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[23]  Desh Ranjan,et al.  On randomized reductions to sparse sets , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[24]  Osamu Watanabe,et al.  How hard are sparse sets? , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[25]  S. Homer,et al.  On reductions of NP sets to sparse sets , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[26]  Lane A. Hemaspaandra,et al.  Reductions to Sets of Low Information Content , 1992, Complexity Theory: Current Research.

[27]  Neil Immerman,et al.  One-way log-tape reductions , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[28]  Christopher B. Wilson On the Decomposability of NC and AC , 1990, SIAM J. Comput..

[29]  Nancy A. Lynch,et al.  Relativization of questions about log space computability , 1976, Mathematical systems theory.

[30]  Allan Borodin,et al.  On Relating Time and Space to Size and Depth , 1977, SIAM J. Comput..

[31]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[32]  Ivan Hal Sudborough,et al.  On the Tape Complexity of Deterministic Context-Free Languages , 1978, JACM.

[33]  Albert R. Meyer,et al.  On time-space classes and their relation to the theory of real addition , 1978, STOC '78.

[34]  Stephen R. Mahaney Sparse Complete Sets of NP: Solution of a Conjecture of Berman and Hartmanis , 1982, J. Comput. Syst. Sci..

[35]  Steven Fortune,et al.  A Note on Sparse Complete Sets , 1978, SIAM J. Comput..

[36]  Paul Young,et al.  Self-Reducibility: Effects of Internal Structure on Computational Complexity , 1990 .

[37]  渡邉 治 On the structure of intractable complexity classes , 1987 .

[38]  Osamu Watanabe,et al.  On polynomial time bounded truth-table reducibility of NP sets to sparse sets , 1990, STOC '90.

[39]  Osamu Watanabe,et al.  On Polynomial-Time Bounded Truth-Table Reducibility of NP Sets to Sparse Sets , 1991, SIAM J. Comput..

[40]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[41]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[42]  Uwe Schöning,et al.  A Low and a High Hierarchy within NP , 1983, J. Comput. Syst. Sci..

[43]  Yaacov Yesha,et al.  On Certain Polynomial-Time Truth-Table Reducibilities of Complete Sets to Sparse Sets , 1983, SIAM J. Comput..

[44]  Juris Hartmanis,et al.  Languages Simultaneously Complete for One-Way and Two-Way Log-Tape Automata , 1981, SIAM J. Comput..

[45]  Juris Hartmanis,et al.  On Log-Tape Isomorphisms of Complete Sets , 1978, Theor. Comput. Sci..

[46]  C. Zheng,et al.  ; 0 ; , 1951 .

[47]  Jacobo Torán,et al.  Self-reducible sets of small density , 1991, Mathematical systems theory.