A simple one-step assay platform based on fluorescence quenching of macroporous silicon.

[1]  Sang Jun Sim,et al.  A Novel Bioassay Platform Using Ferritin‐Based Nanoprobe Hydrogel , 2012, Advanced materials.

[2]  Hyunggee Kim,et al.  Fluorescent viral nanoparticles with stable in vitro and in vivo activity. , 2012, Biomaterials.

[3]  Y. Gartstein,et al.  Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes. , 2012, ACS nano.

[4]  Min-Gon Kim,et al.  Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay. , 2012, ACS nano.

[5]  J. Huh,et al.  A sensitive diagnostic assay of rheumatoid arthritis using three-dimensional ZnO nanorod structure. , 2011, Biosensors & bioelectronics.

[6]  X. Duan,et al.  Porous silicon nanowires. , 2011, Nanoscale.

[7]  E. Wang,et al.  Solid-state label-free integrated aptasensor based on graphene-mesoporous silica-gold nanoparticle hybrids and silver microspheres. , 2011, Analytical chemistry.

[8]  A. Salis,et al.  Porous Silicon-based Electrochemical Biosensors , 2011 .

[9]  Hongtao Yu,et al.  Label-free fluorescent detection of Cu(II) ions based on DNA cleavage-dependent graphene-quenched DNAzymes. , 2011, Chemical communications.

[10]  Guo-Li Shen,et al.  Graphene-DNAzyme based biosensor for amplified fluorescence "turn-on" detection of Pb2+ with a high selectivity. , 2011, Analytical chemistry.

[11]  Jonghyurk Park,et al.  Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth , 2011, Nanotechnology.

[12]  L. Lagae,et al.  Fluorescence near gold nanoparticles for DNA sensing. , 2011, Analytical chemistry.

[13]  Lei Wang,et al.  Conjugation polymer nanobelts: a novel fluorescent sensing platform for nucleic acid detection , 2010, Nucleic acids research.

[14]  D. Tenne,et al.  Enhanced Dye Fluorescence in Novel Dye–ZnO Nanocomposites , 2010 .

[15]  Sung Sik Han,et al.  A Three‐Dimensional Nanostructured Array of Protein Nanoparticles , 2010 .

[16]  M. Smyth,et al.  Extracellular adenosine triphosphate and adenosine in cancer , 2010, Oncogene.

[17]  Ping Ping Hu,et al.  Carbon nanotubes as a low background signal platform for a molecular aptamer beacon on the basis of long-range resonance energy transfer. , 2010, Analytical chemistry.

[18]  Kemin Wang,et al.  Combination of DNA ligase reaction and gold nanoparticle-quenched fluorescent oligonucleotides: a simple and efficient approach for fluorescent assaying of single-nucleotide polymorphisms. , 2010, Analytical chemistry.

[19]  Jin-Seung Park,et al.  A Three‐Dimensional and Sensitive Bioassay Based on Nanostructured Quartz Combined with Viral Nanoparticles , 2010 .

[20]  E. Wang,et al.  A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay. , 2010, Biosensors & bioelectronics.

[21]  Chunhai Fan,et al.  A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis , 2010 .

[22]  Hua Zhang,et al.  Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. , 2010, Small.

[23]  Thomas A. Klar,et al.  Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. , 2009, Nano letters.

[24]  K. Loh,et al.  Room-temperature synthesis of soluble carbon nanotubes by the sonication of graphene oxide nanosheets. , 2009, Journal of the American Chemical Society.

[25]  X. Duan,et al.  Electrically conductive and optically active porous silicon nanowires. , 2009, Nano letters.

[26]  K. Balasubramanian,et al.  Applications of the static quenching of rhodamine B by carbon nanotubes. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[27]  M. Sailor,et al.  Detection of protease activity by FRET using porous silicon as an energy acceptor , 2009 .

[28]  Young Keun Kim,et al.  A highly sensitive and selective diagnostic assay based on virus nanoparticles. , 2009, Nature nanotechnology.

[29]  Nicolas H Voelcker,et al.  Porous silicon biosensors on the advance. , 2009, Trends in biotechnology.

[30]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[31]  P. Pickkers,et al.  Measurement of the endogenous adenosine concentration in humans in vivo: methodological considerations. , 2008, Current drug metabolism.

[32]  T. Markvart,et al.  Efficient fluorescence quenching near crystalline silicon from Langmuir-Blodgett dye films , 2008 .

[33]  E. Oh,et al.  Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. , 2008, Analytical chemistry.

[34]  Thomas Laurell,et al.  ENSAM: Europium Nanoparticles for Signal enhancement of Antibody Microarrays on nanoporous silicon. , 2008, Journal of proteome research.

[35]  I. Choi,et al.  Enhanced stability of heterologous proteins by supramolecular self-assembly , 2007, Applied Microbiology and Biotechnology.

[36]  Nitin Kumar,et al.  Nanoscale ZnO‐Enhanced Fluorescence Detection of Protein Interactions , 2006 .

[37]  Nitin Kumar,et al.  Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[38]  H. Lilja,et al.  Macro/nano-structured silicon as solid support for antibody arrays: Surface design, reproducibility, and assay characteristics enabling discovery of kallikrein gene products for prostate disease diagnostics , 2005 .

[39]  Giridharan Gokulrangan,et al.  Orientational dynamics and dye-DNA interactions in a dye-labeled DNA aptamer. , 2005, Biophysical journal.

[40]  A. Soini,et al.  Dipyrrylmetheneboron Difluorides as Labels in Two-Photon Excited Fluorometry. Part I-Immunometric Assays , 2005, Journal of Fluorescence.

[41]  S. Ekström,et al.  Macro-/nanoporous silicon as a support for high-performance protein microarrays. , 2003, Analytical chemistry.

[42]  J. Blay,et al.  Adenosine stimulation of the proliferation of colorectal carcinoma cell lines. Roles of cell density and adenosine metabolism. , 2003, Biochemical pharmacology.

[43]  B. Fredholm,et al.  Signalling from adenosine receptors to mitogen-activated protein kinases. , 2003, Cellular signalling.

[44]  S. Latini,et al.  Adenosine in the central nervous system: release mechanisms and extracellular concentrations , 2001, Journal of neurochemistry.

[45]  J. Peart,et al.  Cardioprotection with adenosine metabolism inhibitors in ischemic-reperfused mouse heart. , 2001, Cardiovascular research.

[46]  Thomas Laurell,et al.  Pore morphology influence on catalytic turn-over for enzyme activated porous silicon matrices , 1998 .

[47]  R. Wurtman,et al.  Caffeine alters plasma adenosine levels , 1997, Nature.

[48]  J. Blay,et al.  The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. , 1997, Cancer research.

[49]  Thomas Laurell,et al.  Porous silicon as the carrier matrix in microstructured enzyme reactors yielding high enzyme activities , 1997 .

[50]  J. Szostak,et al.  A DNA aptamer that binds adenosine and ATP. , 1995, Biochemistry.

[51]  F. Willig,et al.  Ultrafast electron injection from excited dye molecules into semiconductor electrodes , 1990 .

[52]  V. Kiselev,et al.  Energy Transfer between Excited Adsorbed Dye Molecules and Charged Defects in Insulator-Semiconductor Structures , 1984, September 16, 1984.

[53]  Takahiro Takano,et al.  Adenosine is crucial for deep brain stimulation–mediated attenuation of tremor , 2008, Nature Medicine.

[54]  G. Marko‐Varga,et al.  Porous silicon protein microarray technology and ultra-/superhydrophobic states for improved bioanalytical readout. , 2007, Biotechnology annual review.