Aquaplanet Experiments Using CAM’s Variable-Resolution Dynamical Core

AbstractA variable-resolution option has been added within the spectral element (SE) dynamical core of the U.S. Department of Energy (DOE)–NCAR Community Atmosphere Model (CAM). CAM-SE allows for static refinement via conforming quadrilateral meshes on the cubed sphere. This paper investigates the effect of mesh refinement in a climate model by running variable-resolution (var-res) simulations on an aquaplanet. The variable-resolution grid is a 2° (~222 km) grid with a refined patch of 0.25° (~28 km) resolution centered at the equator. Climatology statistics from these simulations are compared to globally uniform runs of 2° and 0.25°.A significant resolution dependence exists when using the CAM version 4 (CAM4) subgrid physical parameterization package across scales. Global cloud fraction decreases and equatorial precipitation increases with finer horizontal resolution, resulting in drastically different climates between the uniform grid runs and a physics-induced grid imprinting in the var-res simulation...

[1]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[2]  C. Hannay,et al.  Exploratory High-Resolution Climate Simulations using the Community Atmosphere Model (CAM) , 2014 .

[3]  A. Mcdonald,et al.  Transparent Boundary Conditions for the Shallow-Water Equations: Testing in a Nested Environment , 2003 .

[4]  D. Williamson The effect of time steps and time‐scales on parametrization suites , 2013 .

[5]  Christiane Jablonowski,et al.  Using Variable-Resolution Meshes to Model Tropical Cyclones in the Community Atmosphere Model , 2014 .

[6]  Byron A. Boville,et al.  Sensitivity of Simulated Climate to Model Resolution , 1991 .

[7]  Mark A. Taylor,et al.  The Spectral Element Atmosphere Model (SEAM): High-Resolution Parallel Computation and Localized Resolution of Regional Dynamics , 2004 .

[8]  Henry M. Tufo,et al.  Evaluation of the HOMME dynamical core in the aqua-planet configuration of NCAR CAM4: Rainfall , 2011 .

[9]  S. Ghan,et al.  A parameterization of aerosol activation: 2. Multiple aerosol types , 2000 .

[10]  C. Brühl,et al.  Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends , 2010 .

[11]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[12]  M. Blackburn,et al.  The Aqua-Planet Experiment (APE): CONTROL SST Simulation , 2013, Journal of the Meteorological Society of Japan. Ser. II.

[13]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[14]  Andrew Gettelman,et al.  A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests , 2008 .

[15]  Philip J. Rasch,et al.  A Comparison of the CCM3 Model Climate Using Diagnosed and Predicted Condensate Parameterizations , 1998 .

[16]  N. McFarlane,et al.  Sensitivity of Climate Simulations to the Parameterization of Cumulus Convection in the Canadian Climate Centre General Circulation Model , 1995, Data, Models and Analysis.

[17]  A. E. Gill Some simple solutions for heat‐induced tropical circulation , 1980 .

[18]  Mark A. Taylor,et al.  A compatible and conservative spectral element method on unstructured grids , 2010, J. Comput. Phys..

[19]  G. Lackmann Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting , 2012 .

[20]  John M. Dennis,et al.  A Comparison of Two Shallow-Water Models with Nonconforming Adaptive Grids , 2008 .

[21]  Steven E. Benzley,et al.  Automatic All Quadrilateral Mesh Adaption through Refinement and Coarsening , 2009, IMR.

[22]  I. Roulstone,et al.  Royal Meteorological Society discussion meeting on ‘New directions in mathematical modelling in numerical weather prediction’, 16th February, 2000. , 2000 .

[23]  David L. Williamson,et al.  Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, Version 3 , 2008 .

[24]  R. Laprise,et al.  Challenging some tenets of Regional Climate Modelling , 2008 .

[25]  W. Collins,et al.  Hurricanes in an aquaplanet world: Implications of the impacts of external forcing and model horizontal resolution , 2013 .

[26]  David L. Williamson,et al.  Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua-planet simulations , 2008 .

[27]  Kevin A. Reed,et al.  Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs , 2012 .

[28]  C. Bretherton,et al.  The University of Washington Shallow Convection and Moist Turbulence Schemes and Their Impact on Climate Simulations with the Community Atmosphere Model , 2009 .

[29]  Henry M. Tufo,et al.  Performance of the HOMME dynamical core in the aqua-planet configuration of NCAR CAM4: equatorial waves , 2011 .

[30]  J. Hack Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2) , 1994 .

[31]  Todd D. Ringler,et al.  Observed Scaling in Clouds and Precipitation and Scale Incognizance in Regional to Global Atmospheric Models , 2013 .

[32]  R. Leung,et al.  Error Characteristics of Two Grid Refinement Approaches in Aquaplanet Simulations: MPAS-A and WRF , 2013 .

[33]  Richard Neale,et al.  A standard test for AGCMs including their physical parametrizations: I: the proposal , 2000 .

[34]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[35]  Arthur A. Mirin,et al.  Exploring a Global Multiresolution Modeling Approach Using Aquaplanet Simulations , 2013 .

[36]  Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of Community Atmospheric Model (CAM3) , 2011 .

[37]  N SwarztrauberPaul,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[38]  F. Mesinger,et al.  A global shallow‐water model using an expanded spherical cube: Gnomonic versus conformal coordinates , 1996 .

[39]  G. Lackmann Midlatitude Synoptic Meteorology , 2011 .

[40]  W. Collins,et al.  Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of Community Atmospheric Model (CAM3) , 2011 .

[41]  Paul A. Ullrich,et al.  The spectral element method (SEM) on variable-resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity , 2014 .

[42]  Kevin Hamilton,et al.  Explicit global simulation of the mesoscale spectrum of atmospheric motions , 2006 .

[43]  Kevin A. Reed,et al.  An Analytic Vortex Initialization Technique for Idealized Tropical Cyclone Studies in AGCMs , 2011 .

[44]  M. Blackburn,et al.  Context and Aims of the Aqua-Planet Experiment (Special Issue on The Aqua-Planet Experiment Project (APE) and Related Researches) , 2013 .

[45]  R. Sadourny Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids , 1972 .

[46]  Todd D. Ringler,et al.  Exploring a Multiresolution Modeling Approach within the Shallow-Water Equations , 2011 .

[47]  Katherine J. Evans,et al.  AMIP Simulation with the CAM4 Spectral Element Dynamical Core , 2013 .

[48]  Stephen J. Thomas,et al.  A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid , 2007 .

[49]  P. Paolucci,et al.  The “Cubed Sphere” , 1996 .

[50]  Mark A. Taylor,et al.  Conservation of Mass and Energy for the Moist Atmospheric Primitive Equations on Unstructured Grids , 2011 .

[51]  S. Klein,et al.  Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model , 2010 .

[52]  Mark A. Taylor,et al.  CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model , 2012, Int. J. High Perform. Comput. Appl..

[53]  Astrid Holstad,et al.  Transparent boundary conditions for the shallow water equations with a mixed finite element formulation , 2003 .

[54]  Albert A. M. Holtslag,et al.  Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model , 1993 .

[55]  Matthew C. Wheeler,et al.  Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain , 1999 .

[56]  C. Bretherton,et al.  A New Moist Turbulence Parameterization in the Community Atmosphere Model , 2009 .

[57]  James F. Doyle,et al.  The Spectral Element Method , 2020, Wave Propagation in Structures.

[58]  T. Knutson,et al.  NOTES AND CORRESPONDENCE On the Verification and Comparison of Extreme Rainfall Indices from Climate Models , 2008 .