Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces.

We investigate the stability of magnetically trapped atomic Bose-Einstein condensates and thermal clouds near the transition temperature at small distances 0.5 microm< or =d< or =10 microm from a microfabricated silicon chip. For a 2 microm thick copper film, the trap lifetime is limited by Johnson noise induced currents and falls below 1 s at a distance of 4 microm. A dielectric surface does not adversely affect the sample until the attractive Casimir-Polder potential significantly reduces the trap depth.

[1]  Walraven,et al.  Collisionless motion and evaporative cooling of atoms in magnetic traps. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[2]  Courtois,et al.  Internal dynamics of multilevel atoms near a vacuum-dielectric interface. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  C. Zimmermann,et al.  Bose-Einstein condensation in a surface microtrap. , 2001, Physical review letters.

[4]  E. A. Cornell,et al.  Thermally Induced Losses in Ultra-Cold Atoms Magnetically Trapped Near Room-Temperature Surfaces , 2003 .

[5]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .

[6]  Dekker,et al.  Guiding neutral atoms on a chip , 1999, Physical review letters.

[7]  P. Durand,et al.  Theory of generalized Fano profiles , 2002 .

[8]  N. J. Druten,et al.  Evaporative Cooling of Trapped Atoms , 1996 .

[9]  E. Hinds,et al.  Spin coupling between cold atoms and the thermal fluctuations of a metal surface. , 2003, Physical review letters.

[10]  J. Fortagh,et al.  Surface effects in magnetic microtraps , 2002 .

[11]  Taylor,et al.  Fabry-Pérot interferometer for atoms. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[12]  P. Hommelhoff,et al.  Bose–Einstein condensation on a microelectronic chip , 2001, Nature.

[13]  T. Poutanen,et al.  Magnetic field fluctuations arising from thermal motion of electric charge in conductors , 1984 .

[14]  D Kielpinski,et al.  Propagation of Bose-Einstein condensates in a magnetic waveguide. , 2002, Physical review letters.

[15]  M. Wilkens,et al.  Loss and heating of particles in small and noisy traps , 1999, quant-ph/9906128.

[16]  D Kielpinski,et al.  Bose-Einstein condensates near a microfabricated surface. , 2003, Physical review letters.

[17]  C. Zimmermann,et al.  Miniaturized Wire Trap for Neutral Atoms , 1998 .

[18]  Dana Z. Anderson,et al.  Guiding Neutral Atoms Around Curves with Lithographically Patterned Current-Carrying Wires , 1999 .

[19]  C. Henkel,et al.  Coherent transport of matter waves , 2000 .

[20]  Theodor W. Hänsch,et al.  ATOMIC MICROMANIPULATION WITH MAGNETIC SURFACE TRAPS , 1999 .

[21]  Bose-Einstein condensation in a simple microtrap , 2002, cond-mat/0210488.

[22]  M. Kasevich,et al.  Macroscopic quantum interference from atomic tunnel arrays , 1998, Science.

[23]  Andrew G. Glen,et al.  APPL , 2001 .

[24]  James F. Babb,et al.  Long-range interactions of lithium atoms , 1996, physics/9612011.

[25]  Cho,et al.  Measurement of the Casimir-Polder force. , 1993, Physical review letters.