Optimization-Based Approach to the Embodiment Design of Compliant Mechanisms with Different Flexure Hinges

In various applications compliant mechanisms allow a reduction of mass, assembly and manufacturing effort through the integration of functions into fewer parts and an increasing precision through less wear and backlash. Due to the variety of geometric parameters and the complex relation between loads, deformation and strain, the dimensioning of flexure hinges is still a challenging task. This paper presents a new optimization-based approach to the embodiment design of an exemplary chosen compliant gripper mechanism with different corner-filleted flexure hinges. Based on a rigid-body model, loads and rotation angles for the dimensioning of each hinge are deduced. A linear finite-beam model is used to analyze the corresponding strain. Through the application of the box-complex method, chosen dimensions of the flexure hinges are optimized, resulting in a suitable embodiment design with an admissible maximum strain and a minimized installation space. The optimization results are successfully evaluated with regard to their distribution over multiple repetitions and the accuracy compared to a three-dimensional FEM model.

[1]  S. Linß Ein Beitrag zur geometrischen Gestaltung und Optimierung prismatischer Festkörpergelenke in nachgiebigen Koppelmechanismen , 2015 .

[2]  Tien-Fu Lu,et al.  Review of circular flexure hinge design equations and derivation of empirical formulations , 2008 .

[3]  M. J. Box A New Method of Constrained Optimization and a Comparison With Other Methods , 1965, Comput. J..

[4]  Markus Merkel,et al.  One-Dimensional Finite Elements , 2013 .

[5]  J. A. Guin,et al.  Modification of the Complex Method of Constrained Optimization , 1968, Comput. J..

[6]  Larry L. Howell,et al.  Handbook of compliant mechanisms , 2013 .

[7]  Robert Friedrich Modellierung und Optimierung nachgiebiger Mechanismen auf Basis elastischer Festkörpergelenke mit Hilfe von nichtlinearen Finiten Balkenelementen , 2016 .

[8]  Xianmin Zhang,et al.  Design of Compliant Mechanisms Using a Pseudo-Rigid-Body Model Based Topology Optimization Method , 2014 .

[9]  Lena Zentner,et al.  General design equations for the rotational stiffness, maximal angular deflection and rotational precision of various notch flexure hinges , 2017 .

[10]  Guangbo Hao,et al.  Compliance Synthesis of a Class of Planar Compliant Parallelogram Mechanisms Using the Position Space Concept , 2018, 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR).

[11]  Burkhard Corves,et al.  DMG-Lib - the "Digital Mechanism and Gear Library" - Project , 2007 .

[12]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[13]  Max A. González-Palacios,et al.  Performance optimization and mechanical modeling of uniaxial piezoresistive microaccelerometers , 2009 .

[14]  Larry L. Howell,et al.  Handbook of Compliant Mechanisms: Howell/Handbook , 2013 .

[15]  Mathias Hüsing,et al.  Getriebetechnik : Grundlagen, Entwicklung und Anwendung ungleichmäßig übersetzender Getriebe ; mit 23 Tabellen sowie 14 Praxisbeispielen mit Lösungen , 2011 .

[16]  Klaus Zimmermann,et al.  Einfluss der Orientierung von Festkörpergelenken auf die elastokinematischen Eigenschaften , 2018 .