Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II

[1]  D. Reinberg,et al.  Where transcription meets repair , 1994, Cell.

[2]  R. Wood,et al.  Xeroderma pigmentosum and nucleotide excision repair of DNA. , 1994, Trends in biochemical sciences.

[3]  H. Qiu,et al.  DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase II , 1994, Nature.

[4]  S. W. Matson,et al.  DNA helicases: Enzymes with essential roles in all aspects of DNA metabolism , 1994, BioEssays : news and reviews in molecular, cellular and developmental biology.

[5]  H. Qiu,et al.  The Saccharomyces cerevisiae DNA repair gene RAD25 is required for transcription by RNA polymerase II. , 1993, Genes & development.

[6]  P. Sung,et al.  Human xeroderma pigmentosum group D gene encodes a DMA helicase , 1993, Nature.

[7]  M. Tang,et al.  NUCLEOTIDE EXCISION REPAIR , 1993, Photochemistry and photobiology.

[8]  P. Chambon,et al.  DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. , 1993, Science.

[9]  A. Sancar,et al.  Molecular mechanism of transcription-repair coupling. , 1993, Science.

[10]  P. Hanawalt,et al.  Stranded in an active gene , 1993, Current Biology.

[11]  L. Thompson,et al.  Excision repair in man and the molecular basis of xeroderma pigmentosum syndrome. , 1993, Cold Spring Harbor symposia on quantitative biology.

[12]  P. Sung,et al.  DNA repair genes and proteins of Saccharomyces cerevisiae. , 1993, Annual review of genetics.

[13]  D. Reinberg,et al.  The cycling of RNA polymerase II during transcription. , 1993, Cold Spring Harbor symposia on quantitative biology.

[14]  Lei Li,et al.  Characterization of molecular defects in xeroderma pigmentosum group C , 1993, Nature Genetics.

[15]  E. Friedberg Xeroderma pigmentosum, Cockayne's syndrome, helicases, and DNA repair: What's the relationship? , 1992, Cell.

[16]  P. Chambon,et al.  Cloning of the 62-kilodalton component of basic transcription factor BTF2. , 1992, Science.

[17]  R. Legerski,et al.  Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C , 1992, Nature.

[18]  D. Reinberg,et al.  Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II , 1992, Nature.

[19]  A. Sancar,et al.  Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5' and the 6th phosphodiester bond 3' to the photodimer. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[20]  D. Reinberg,et al.  Factors involved in specific transcription by mammalian RNA polymerase II. Identification and characterization of factor IIH. , 1992, The Journal of biological chemistry.

[21]  M. Horikoshi,et al.  Conserved sequence motifs in the small subunit of human general transcription factor TFIIE , 1991, Nature.

[22]  R. Tjian,et al.  Structure and functional properties of human general transcription factor IIE , 1991, Nature.

[23]  A. Hoffmann,et al.  Structural motifs and potential a homologies in the large subunit of human general transcription factor TFIIE , 1991, Nature.

[24]  D. Reinberg,et al.  Cloning of a human gene encoding the general transcription initiation factor IIB , 1991, Nature.

[25]  D. Reinberg,et al.  Factors involved in specific transcription by mammalian RNA polymerase II. Purification and functional analysis of general transcription factor IIE. , 1991, The Journal of biological chemistry.

[26]  A. V. D. Eb,et al.  A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome , 1990, Cell.

[27]  Charles R.scriver,et al.  The Metabolic basis of inherited disease , 1989 .

[28]  P. Sharp,et al.  DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. , 1980, Proceedings of the National Academy of Sciences of the United States of America.