On fast multipole methods for Fredholm integral equations of the second kind with singular and highly oscillatory kernels

ABSTRACT This paper considers a special boundary element method for Fredholm integral equations of the second kind with singular and highly oscillatory kernels. To accelerate the resolution of the linear system and the matrix-vector multiplication in each iteration, the fast multipole method (FMM) is applied, which reduces the complexity from to . The oscillatory integrals are calculated by the steepest decent method, whose accuracy becomes more accurate as the frequency increases. We study the role of the high-frequency w in the FMM, showing that the discretization system is more well conditioned as high-frequency w increase. Moreover, the larger w may reduce rank expressions from the kernel function, and decrease the absolute errors. At last, the optimal convergence rate of truncation is also represented in this paper. Numerical experiments and applications support the claims and further illustrate the performance of the method.

[1]  Lexing Ying,et al.  Fast Directional Multilevel Algorithms for Oscillatory Kernels , 2007, SIAM J. Sci. Comput..

[2]  Eric de Sturler,et al.  Recycling Krylov subspaces for CFD applications and a new hybrid recycling solver , 2015, J. Comput. Phys..

[3]  S. Xiang Efficient Filon-type methods for $$\int_a^bf(x)\,{\rm e}^{{\rm i}\omega g(x)}\,{\rm d}x$$ , 2007 .

[4]  F. Ursell,et al.  Integral Equations with a Rapidly Oscillating Kernel , 1969 .

[5]  Shuhuang Xiang,et al.  On uniform approximations to hypersingular finite-part integrals , 2016 .

[6]  Shuhuang Xiang,et al.  Numerical solutions to Volterra integral equations of the second kind with oscillatory trigonometric kernels , 2013, Appl. Math. Comput..

[7]  Guidong Liu,et al.  Fast multipole methods for approximating a function from sampling values , 2017, Numerical Algorithms.

[8]  Zydrunas Gimbutas,et al.  A wideband fast multipole method for the Helmholtz equation in three dimensions , 2006, J. Comput. Phys..

[9]  Norman Yarvin,et al.  An Improved Fast Multipole Algorithm for Potential Fields on the Line , 1999 .

[10]  Zydrunas Gimbutas,et al.  A Generalized Fast Multipole Method for Nonoscillatory Kernels , 2003, SIAM J. Sci. Comput..

[11]  N. Nishimura Fast multipole accelerated boundary integral equation methods , 2002 .

[12]  Eric Darve,et al.  Cauchy Fast Multipole Method for General Analytic Kernels , 2014, SIAM J. Sci. Comput..

[13]  Shuhuang Xiang,et al.  Uniform approximations to Cauchy principal value integrals of oscillatory functions , 2009, Appl. Math. Comput..

[14]  Eric Darve,et al.  The Fast Multipole Method , 2000 .

[15]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[16]  Eric F Darve The Fast Multipole Method , 2000 .

[17]  Shuhuang Xiang,et al.  On the evaluation of Cauchy principal value integrals of oscillatory functions , 2010, J. Comput. Appl. Math..

[18]  Ruyun Chen,et al.  Fast Integration for Cauchy Principal Value Integrals of Oscillatory Kind , 2013 .

[19]  Vladimir Rokhlin,et al.  An Improved Fast Multipole Algorithm for Potential Fields , 1998, SIAM J. Sci. Comput..

[20]  John L. Tsalamengas,et al.  Gauss-Jacobi quadratures for weakly, strongly, hyper- and nearly-singular integrals in boundary integral equation methods for domains with sharp edges and corners , 2016, J. Comput. Phys..

[21]  Tao Wang,et al.  Evaluation of Cauchy principal value integrals of oscillatory kind , 2010, Appl. Math. Comput..

[22]  Arieh Iserles,et al.  On the numerical quadrature of highly-oscillating integrals II: Irregular oscillators , 2005 .

[23]  Shuhuang Xiang,et al.  On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals , 2015, Adv. Comput. Math..

[24]  Yijun Liu Fast Multipole Boundary Element Method: Theory and Applications in Engineering , 2009 .

[25]  Lexing Ying,et al.  A kernel independent fast multipole algorithm for radial basis functions , 2006, J. Comput. Phys..

[26]  W. Marsden I and J , 2012 .

[27]  Giovanni Monegato,et al.  Definitions, properties and applications of finite-part integrals , 2009 .

[28]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[29]  Wei Cai,et al.  A Wideband Fast Multipole Method for the two-dimensional complex Helmholtz equation , 2010, Comput. Phys. Commun..

[30]  Eric Darve,et al.  The black-box fast multipole method , 2009, J. Comput. Phys..

[31]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[32]  T. Kim,et al.  Filon-Clenshaw-Curtis Rules for Highly Oscillatory Integrals with Algebraic Singularities and Stationary Points , 2012, SIAM J. Numer. Anal..

[33]  G. E. Okecha HERMITE INTERPOLATION AND A METHOD FOR EVALUATING CAUCHY PRINCIPAL VALUE INTEGRALS OF OSCILLATORY KIND , 2006 .

[34]  F. Ricci Book Review: Harmonic analysis real-variable methods, orthogonality, and oscillatory integrals , 1999 .

[35]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[36]  P. Kythe,et al.  Computational Methods for Linear Integral Equations , 2002 .

[37]  V. Rokhlin,et al.  Fast algorithms for polynomial interpolation, integration, and differentiation , 1996 .

[38]  Eric F Darve Regular ArticleThe Fast Multipole Method: Numerical Implementation , 2000 .

[39]  L. Greengard,et al.  A fast algorithm for the evaluation of heat potentials , 1990 .

[40]  nominatif de l’habitat,et al.  Definitions , 1964, Innovation Dynamics and Policy in the Energy Sector.

[41]  Shuhuang Xiang,et al.  A Chebyshev collocation method for a class of Fredholm integral equations with highly oscillatory kernels , 2016, J. Comput. Appl. Math..

[42]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[43]  Tao Wang,et al.  A rapid solution of a kind of 1D Fredholm oscillatory integral equation , 2012, J. Comput. Appl. Math..

[44]  D. Zorin,et al.  A fast solver for the Stokes equations with distributed forces in complex geometries , 2004 .

[45]  G. E. Okecha Quadrature formulae for Cauchy principal value integrals of oscillatory kind , 1987 .

[46]  M. R. Capobiancoa,et al.  On quadrature for Cauchy principal value integrals of oscillatory functions , 2003 .

[47]  V. Rokhlin Rapid Solution of Integral Equations of Scattering Theory , 1990 .

[48]  A. Iserles On the numerical quadrature of highly‐oscillating integrals I: Fourier transforms , 2004 .

[49]  Víctor Domínguez,et al.  Filon-Clenshaw-Curtis rules for a class of highly-oscillatory integrals with logarithmic singularities , 2013, J. Comput. Appl. Math..

[50]  V. Rokhlin Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions , 1993 .

[51]  Daan Huybrechs,et al.  On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..

[52]  Shuhuang Xiang,et al.  An improved algorithm for the evaluation of Cauchy principal value integrals of oscillatory functions and its application , 2015, J. Comput. Appl. Math..

[53]  Do-Hoon Kwon,et al.  High‐frequency asymptotic acceleration of the fast multipole method , 1996 .

[54]  Eric Darve,et al.  Fast directional multilevel summation for oscillatory kernels based on Chebyshev interpolation , 2012, J. Comput. Phys..

[55]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .

[56]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[57]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[58]  Eric Darve,et al.  Fourier-Based Fast Multipole Method for the Helmholtz Equation , 2013, SIAM J. Sci. Comput..

[59]  Arieh Iserles,et al.  The spectral problem for a class of highly oscillatory Fredholm integral operators , 2010 .

[60]  Giuliana Criscuolo,et al.  A new algorithm for Cauchy principal value and Hadamard finite-part integrals , 1997 .