Perron–Frobenius theory for complex matrices

[1]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[2]  L. Collatz Einschließungssatz für die charakteristischen Zahlen von Matrizen , 1942 .

[3]  M. Marcus,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[4]  J. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[5]  Gregory E. Coxson,et al.  The P-matrix problem is co-NP-complete , 1994, Math. Program..

[6]  Gernot M. Engel,et al.  Diagonal similarity and equivalence for matrices over groups with 0 , 1975 .

[7]  J. Rohn Systems of linear interval equations , 1989 .

[8]  B. Zalar Linear operators preserving the sign-real spectral radius , 1999 .

[9]  S. Rump THEOREMS OF PERRON-FROBENIUS TYPE FOR MATRICES WITHOUT SIGN RESTRICTIONS , 1997 .

[10]  Siegfried M. Rump,et al.  Conservatism of the circle criterion-solution of a problem posed by A. Megretski , 2001, IEEE Trans. Autom. Control..

[11]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[12]  S. Rump THE SIGN-REAL SPECTRAL RADIUS AND CYCLE PRODUCTS , 1998 .

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  G. Alistair Watson Computing the Structured Singular Value , 1992, SIAM J. Matrix Anal. Appl..

[15]  W. Prager,et al.  Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides , 1964 .

[16]  Robert D. Skeel,et al.  Scaling for Numerical Stability in Gaussian Elimination , 1979, JACM.

[17]  M. Overton,et al.  The largest singular value of e/sup X/A/sub 0/e/sup -X/ is convex on convex sets of commuting matrices , 1990 .

[18]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[19]  Siegfried M. Rump Ill-Conditioned Matrices Are Componentwise Near to Singularity , 1999, SIAM Rev..

[20]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[21]  A. Megretski How conservative is the circle criterion , 1999 .

[22]  S. Treil THE GAP BETWEEN COMPLEX STRUCTURED SINGULAR VALUE μ AND ITS UPPER BOUND IS INFINITE , 2000 .

[23]  Gernot M. Engel,et al.  The Hadamard-Fischer inequality for a class of matrices defined by eigenvalue monotonicity , 1976 .

[24]  James Demmel,et al.  The Componentwise Distance to the Nearest Singular Matrix , 1992, SIAM J. Matrix Anal. Appl..