Perron–Frobenius theory for complex matrices
暂无分享,去创建一个
[1] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[2] L. Collatz. Einschließungssatz für die charakteristischen Zahlen von Matrizen , 1942 .
[3] M. Marcus,et al. A Survey of Matrix Theory and Matrix Inequalities , 1965 .
[4] J. Doyle. Analysis of Feedback Systems with Structured Uncertainty , 1982 .
[5] Gregory E. Coxson,et al. The P-matrix problem is co-NP-complete , 1994, Math. Program..
[6] Gernot M. Engel,et al. Diagonal similarity and equivalence for matrices over groups with 0 , 1975 .
[7] J. Rohn. Systems of linear interval equations , 1989 .
[8] B. Zalar. Linear operators preserving the sign-real spectral radius , 1999 .
[9] S. Rump. THEOREMS OF PERRON-FROBENIUS TYPE FOR MATRICES WITHOUT SIGN RESTRICTIONS , 1997 .
[10] Siegfried M. Rump,et al. Conservatism of the circle criterion-solution of a problem posed by A. Megretski , 2001, IEEE Trans. Autom. Control..
[11] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[12] S. Rump. THE SIGN-REAL SPECTRAL RADIUS AND CYCLE PRODUCTS , 1998 .
[13] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[14] G. Alistair Watson. Computing the Structured Singular Value , 1992, SIAM J. Matrix Anal. Appl..
[15] W. Prager,et al. Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides , 1964 .
[16] Robert D. Skeel,et al. Scaling for Numerical Stability in Gaussian Elimination , 1979, JACM.
[17] M. Overton,et al. The largest singular value of e/sup X/A/sub 0/e/sup -X/ is convex on convex sets of commuting matrices , 1990 .
[18] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[19] Siegfried M. Rump. Ill-Conditioned Matrices Are Componentwise Near to Singularity , 1999, SIAM Rev..
[20] Andrew Packard,et al. The complex structured singular value , 1993, Autom..
[21] A. Megretski. How conservative is the circle criterion , 1999 .
[22] S. Treil. THE GAP BETWEEN COMPLEX STRUCTURED SINGULAR VALUE μ AND ITS UPPER BOUND IS INFINITE , 2000 .
[23] Gernot M. Engel,et al. The Hadamard-Fischer inequality for a class of matrices defined by eigenvalue monotonicity , 1976 .
[24] James Demmel,et al. The Componentwise Distance to the Nearest Singular Matrix , 1992, SIAM J. Matrix Anal. Appl..