On some optimisation models in a fuzzy-stochastic environment

This paper is on fuzzy stochastic optimisation, an area that is quickly coming to the forefront of mathematical programming under uncertainty. An even stronger motivating factor for the growing interest in this area can be found in the ubiquitous nature of decision problems involving hybrid imprecision. More precisely, we consider a range of situations in which random factors and fuzzy information co-occur in an optimisation setting. Related hybrid optimisation models are discussed and converted into deterministic terms through appropriate tools like probabilistic set, uncertain probability, and fuzzy random variable, making good use of uncertainty principles. We also discuss ways to deal with the resulting problems. Numerical examples carried out using class optimisation software demonstrate the efficiency of the proposed approaches. We shall end this article by pointing out some of the challenges that currently occupy researchers in this emerging field.

[1]  M. K. Luhandjula Fuzzy optimization: an appraisal , 1989 .

[2]  E. Gobet,et al.  Stochastic Linear Programming , 2022 .

[3]  Peter Kall,et al.  Stochastic Programming , 1995 .

[4]  H. Zimmermann DESCRIPTION AND OPTIMIZATION OF FUZZY SYSTEMS , 1975 .

[5]  L. Zadeh Probability measures of Fuzzy events , 1968 .

[6]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[7]  Hidetomo Ichihashi,et al.  Fuzzy and semi-infinite mathematical programming , 1992, Inf. Sci..

[8]  Ching-Lai Hwang,et al.  A stochastic possibilistic programming model for bank hedging decision problems , 1993 .

[9]  Esfandiar Eslami,et al.  Uncertain probabilities II: the continuous case , 2004, Soft Comput..

[10]  C. Hwang,et al.  Interactive fuzzy linear programming , 1992 .

[11]  Ichiro Nishizaki,et al.  A Possibilistic and Stochastic Programming Approach to Fuzzy Random MST Problems , 2005, IEICE Trans. Inf. Syst..

[12]  Teresa Peña,et al.  Multiobjective stochastic programming for feed formulation , 2009, J. Oper. Res. Soc..

[13]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[14]  Hiroaki Ishii,et al.  Probability maximization models for portfolio selection under ambiguity , 2009, Central Eur. J. Oper. Res..

[15]  Madan M. Gupta,et al.  On fuzzy stochastic optimization , 1996, Fuzzy Sets Syst..

[16]  S. Vajda,et al.  Probabilistic Programming , 1972 .

[17]  Zdenek Zmeskal,et al.  Application of the Fuzzy - Stochastic Methodology to Appraising the Firm Value as a European Call Option , 2001, Eur. J. Oper. Res..

[18]  Sudarsan Nanda,et al.  A new solution method for fuzzy chance constrained programming problem , 2006, Fuzzy Optim. Decis. Mak..

[19]  C. Mohan,et al.  A Fuzzifying Approach to Stochastic Programming , 1997 .

[20]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[21]  R. Kruse,et al.  Statistics with vague data , 1987 .

[22]  Nguyen Van Hop,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[23]  Michael R. Wagner Stochastic 0-1 linear programming under limited distributional information , 2008, Oper. Res. Lett..

[24]  E. E. Ammar,et al.  On fuzzy random multiobjective quadratic programming , 2009, Eur. J. Oper. Res..

[25]  Yian-Kui Liu,et al.  A class of fuzzy random optimization: expected value models , 2003, Inf. Sci..

[26]  Huibert Kwakernaak,et al.  Fuzzy random variables--II. Algorithms and examples for the discrete case , 1979, Inf. Sci..

[27]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[28]  Donald L. Kreider,et al.  An introduction to linear analysis , 1966 .

[29]  Baoding Liu,et al.  Fuzzy random chance-constrained programming , 2001, IEEE Trans. Fuzzy Syst..

[30]  M. K. Luhandjula Linear programming under randomness and fuzziness , 1983 .

[31]  Esfandiar Eslami,et al.  Uncertain probabilities I: the discrete case , 2003, Soft Comput..

[32]  Rüdiger Schultz,et al.  Conditional Value-at-Risk in Stochastic Programs with Mixed-Integer Recourse , 2006, Math. Program..

[33]  M. K. Luhandjula Fuzzy stochastic linear programming: Survey and future research directions , 2006, Eur. J. Oper. Res..

[34]  Zdenek Zmeskal,et al.  Value at risk methodology under soft conditions approach (fuzzy-stochastic approach) , 2005, Eur. J. Oper. Res..

[35]  Volker Krätschmer,et al.  A unified approach to fuzzy random variables , 2001, Fuzzy Sets Syst..

[36]  J. Bán Radon-Nikody´m theorem and conditional expectation of fuzzy-valued measures and variables , 1990 .

[37]  M. K. Luhandjula A Monte Carlo Simulation Based Approach for Stochastic Semi-Infinite Mathematical Programming Problems , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[38]  Jun Li,et al.  A class of multiobjective linear programming model with fuzzy random coefficients , 2006, Math. Comput. Model..

[39]  James J. Buckley,et al.  Uncertain probabilities III: the continuous case , 2004, Soft Comput..

[40]  K. Hirota Concepts of probabilistic sets , 1981 .

[41]  G. L. S. Shackle,et al.  Decision Order and Time in Human Affairs , 1962 .

[42]  Ichiro Nishizaki,et al.  Interactive multiobjective fuzzy random linear programming: Maximization of possibility and probability , 2008, Eur. J. Oper. Res..

[43]  Ana Colubi,et al.  On the formalization of fuzzy random variables , 2001, Inf. Sci..

[44]  Nguyen Van Hop Solving linear programming problems under fuzziness and randomness environment using attainment values , 2007, Inf. Sci..

[45]  M. K. Luhandjula,et al.  Optimisation under hybrid uncertainty , 2004, Fuzzy Sets Syst..

[46]  T Bhaskar,et al.  A fuzzy mathematical programming approach for cross-sell optimization in retail banking , 2007, J. Oper. Res. Soc..

[47]  Yian-Kui Liu,et al.  Fuzzy random programming with equilibrium chance constraints , 2005, Inf. Sci..

[48]  Zhaohao Sun,et al.  Fuzzy stochastic dynamic programming for marketing decision support , 2000, Int. J. Intell. Syst..

[49]  Jean-Marc Martel,et al.  A Multiobjective Fuzzy Stochastic Program For Water Resources Optimization: The Case Of Lake Management , 2004 .

[50]  Lior Pachter,et al.  The Mathematics of Phylogenomics , 2004, SIAM Rev..

[51]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[52]  Dan Tiba,et al.  Optimization Problems for Curved Mechanical Structures , 2005, SIAM J. Control. Optim..