A Study of Low Order Spherical Harmonic Closures for Rapid Transients in Radiation Transport. Radiation Transport.

[1]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[2]  T. Brunner,et al.  Riemann solvers for time-dependent transport based on the maximum entropy and spherical harmonics closures , 2000 .

[3]  James Paul Holloway,et al.  On solutions to the Pn equations for thermal radiative transfer , 2008, J. Comput. Phys..

[4]  G. N. Minerbo,et al.  Maximum entropy Eddington factors , 1978 .

[5]  Ryan G. McClarren,et al.  Spherical harmonics methods for thermal radiation transport , 2007 .

[6]  Ryan G. McClarren,et al.  A Quasilinear Implicit Riemann Solver for the Time-Dependent Pn Equations , 2007 .

[7]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[8]  Barry D Ganapol SOLUTION OF THE ONE-GROUP TIME-DEPENDENT NEUTRON TRANSPORT EQUATION IN AN INFINITE MEDIUM BY POLYNOMIAL RECONSTRUCTION. , 1986 .

[9]  D. Mihalas,et al.  Foundations of Radiation Hydrodynamics , 1985 .

[10]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[11]  Axel Klar,et al.  Time-dependent simplified PN approximation to the equations of radiative transfer , 2007, J. Comput. Phys..

[12]  Jim E. Morel,et al.  Analysis of Ray-Effect Mitigation Techniques , 2003 .

[13]  G. I. Bell,et al.  Nuclear Reactor Theory , 1952 .

[14]  James Paul Holloway,et al.  A QUASI-STATIC CLOSURE FOR 3 RD ORDER SPHERICAL HARMONICS TIME-DEPENDENT RADIATION TRANSPORT IN 2-D , 2009 .

[15]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .