A series of zinc beta-diiminate (BDI) complexes and their solid-state structures, solution dynamics, and copolymerization behavior with CO(2) and cyclohexene oxide (CHO) are reported. Stoichiometric reactions of the copolymerization initiation steps show that zinc alkoxide and bis(trimethylsilyl)amido complexes insert CO(2), whereas zinc acetates react with CHO. [(BDI-2)ZnOMe](2) [(BDI-2) = 2-((2,6-diethylphenyl)amido)-4-((2,6-diethylphenyl)imino)-2-pentene] and (BDI-1)ZnO(i)Pr [(BDI-1) = 2-((2,6-diisopropylphenyl)amido)-4-((2,6-diisopropylphenyl)imino)-2-pentene] react with CO(2) to form [(BDI-2)Zn(mu-OMe)(mu,eta(2)-O(2)COMe)Zn(BDI-2)] and [(BDI-1)Zn(mu,eta(2)-O(2)CO(i)Pr)](2), respectively. (BDI-2)ZnN(SiMe(3))(2) inserts CO(2) and eliminates trimethylsilyl isocyanate to give [(BDI-2)Zn(mu-OSiMe(3))](2). [(BDI-7)Zn(mu-OAc)](2) [(BDI-7) = 3-cyano-2-((2,6-diethylphenyl)amido)-4-((2,6-diethylphenyl)imino)-2-pentene] reacts with 1.0 equiv of CHO to yield [(BDI-7)Zn(mu,eta(2)-OAc)(mu,eta(1)-OCyOAc)Zn(BDI-7)]. Under typical polymerization conditions, rate studies on the copolymerization exhibit no dependence in [CO(2)], a first-order dependence in [CHO], and orders in [Zn](tot) ranging from 1.0 to 1.8 for [(BDI)ZnOAc] complexes. The copolymerizations of CHO (1.98 M in toluene) and 300 psi CO(2) at 50 degrees C using [(BDI-1)ZnOAc] and [(BDI-2)ZnOAc] show orders in [Zn](tot) of 1.73 +/- 0.06 and 1.02 +/- 0.03, respectively. We propose that two zinc complexes are involved in the transition state of the epoxide ring-opening event.