Plasmon coupling in self-assembled gold nanoparticle-based honeycomb islands

Metallic nanostructures that sustain plasmonic resonances are indispensable ingredients for many functional devices. Whereas structures fabricated with top-down methods entail the advantage of a nearly unlimited control over all plasmonic properties, they are in most cases unsuitable for a low cost fabrication on large surfaces; and eventually a truly nanometric size domain is difficult to reach due to limitations in the fabrication resolution. Although ordinary bottom-up techniques based on colloidal nanolithography promise to lift these limitations, they often suffer from their incapability to self-assemble nanoparticles at large surfaces and at a density necessary to observe effects that strongly deviate from those of isolated nanoparticles. Here, we rely on the application of sequential bottom-up fabrication steps to realize honeycomb structures from gold nanoparticles that show strong extinction bands in the near-infrared. The extraordinary properties are only facilitated by densely packing the nanop...

[1]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[2]  Carsten Rockstuhl,et al.  Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range. , 2011, ACS nano.

[3]  F. Theil,et al.  Surface-enhanced Raman spectroscopy (SERS): progress and trends , 2012, Analytical and Bioanalytical Chemistry.

[4]  Zuocheng Zhou,et al.  Fabrication of binary colloidal crystals and non-close-packed structures by a sequential self-assembly method. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[5]  Y L Xu,et al.  Electromagnetic scattering by an aggregate of spheres. , 1995, Applied optics.

[6]  Vladimir V Tsukruk,et al.  Collective and individual plasmon resonances in nanoparticle films obtained by spin-assisted layer-by-layer assembly. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[7]  Javier Aizpurua,et al.  Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.

[8]  Alfons van Blaaderen,et al.  Layer-by-Layer Growth of Binary Colloidal Crystals , 2002, Science.

[9]  A. Bultheel,et al.  Real and reciprocal space order parameters for porous arrays from image analysis , 2009 .

[10]  Sergei A. Tretyakov,et al.  Three-dimensional metamaterial nanotips , 2010 .

[11]  F. Kaatz Measuring the order in ordered porous arrays: can bees outperform humans? , 2006, Naturwissenschaften.

[12]  R. Adelung,et al.  Strain-controlled growth of nanowires within thin-film cracks , 2004, Nature materials.

[13]  Na Liu,et al.  Magnetic plasmon formation and propagation in artificial aromatic molecules. , 2012, Nano letters.

[14]  M. Haase,et al.  3D self-assembled plasmonic superstructures of gold nanospheres: synthesis and characterization at the single-particle level. , 2011, Small.

[15]  G. Becherer,et al.  Die Ermittlung von radialen Verteilungsfunktionen aus dem Beugungsbild zweidimensionaler amorpher Strukturen , 1966 .

[16]  Nicholas A. Kotov,et al.  Nanoparticle assembly for 1D and 2D ordered structures , 2009 .

[17]  V. Kravets,et al.  Bottom-up fabrication and optical characterization of dense films of meta-atoms made of core-shell plasmonic nanoparticles. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[18]  S. Burger,et al.  Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography. , 2011, ACS nano.

[19]  Richard W. Taylor,et al.  How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[20]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[21]  Carsten Rockstuhl,et al.  Coupling of Plasmon Resonances in Tunable Layered Arrays of Gold Nanoparticles , 2011 .

[22]  Jinsheng Zheng,et al.  Light-triggered covalent assembly of gold nanoparticles in aqueous solution. , 2011, Chemical communications.

[23]  H. Möhwald,et al.  Plasmon Resonance Tunable by Deaggregation of Gold Nanoparticles in Multilayers , 2007 .

[24]  Feng Liu,et al.  3D Ordered Gold Strings by Coating Nanoparticles with Mesogens , 2009 .

[25]  Nicholas A Kotov,et al.  Inkjet deposition of layer-by-layer assembled films. , 2010, Journal of the American Chemical Society.

[26]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[27]  Harald Giessen,et al.  Plasmonic oligomers: The role of individual particles in collective behavior , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[28]  Christopher J. Kiely,et al.  Ordered Colloidal Nanoalloys , 2000 .

[29]  L. Dal Negro,et al.  Deterministic aperiodic nanostructures for photonics and plasmonics applications , 2012 .

[30]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[31]  A. Bultheel,et al.  Order parameters from image analysis: a honeycomb example , 2008, Naturwissenschaften.

[32]  C. Mirkin,et al.  Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. , 2020, Nature nanotechnology.

[33]  Masayuki Nogami,et al.  One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties , 2006 .

[34]  S. Link,et al.  Toward plasmonic polymers. , 2012, Nano letters.

[35]  Federico Capasso,et al.  Plasmonic mode engineering with templated self-assembled nanoclusters. , 2012, Nano letters.

[36]  J. Spatz,et al.  Block Copolymer Micelle Nanolithography , 2003 .

[37]  Stephen Mann,et al.  One‐Dimensional Plasmon Coupling by Facile Self‐Assembly of Gold Nanoparticles into Branched Chain Networks , 2005 .

[38]  Peng Jiang,et al.  Templated Fabrication of Periodic Binary Nanostructures , 2008 .

[39]  J. Aizpurua,et al.  Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps , 2011 .

[40]  J. Vermant,et al.  Directed self-assembly of nanoparticles. , 2010, ACS nano.

[41]  Jianbin Xu,et al.  High-Quality Large-Area Graphene from Dehydrogenated Polycyclic Aromatic Hydrocarbons , 2012 .

[42]  S. Mann,et al.  A Generalized Mechanism for Ligand‐Induced Dipolar Assembly of Plasmonic Gold Nanoparticle Chain Networks , 2011 .

[43]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[44]  S. Kudera,et al.  Formation of Large 2D Arrays of Shape‐Controlled Colloidal Nanoparticles at Variable Interparticle Distances , 2013 .

[45]  Vassilios Yannopapas,et al.  MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals , 2000 .

[46]  P. Mulvaney,et al.  Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer. , 2011, Nano letters.

[47]  Brian M. Leonard,et al.  Colloidal crystal microarrays and two-dimensional superstructures: a versatile approach for patterned surface assembly. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[48]  V. Santhanam,et al.  Realization of thermally durable close-packed 2D gold nanoparticle arrays using self-assembly and plasma etching , 2012, Nanotechnology.

[49]  Yang Li,et al.  Manipulating magnetic plasmon propagation in metallic nanocluster networks. , 2012, ACS nano.

[50]  J. Zhao,et al.  Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. , 2008, Accounts of chemical research.