The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica)

[1]  J. Hansen,et al.  EPICA Dome C record of glacial and interglacial intensities , 2010 .

[2]  R. Röthlisberger,et al.  Potential and limitations of marine and ice core sea ice proxies: an example from the Indian Ocean sector , 2010 .

[3]  V. Masson‐Delmotte,et al.  Synchronising EDML and NorthGRIP ice cores using δ18O of atmospheric oxygen (δ18Oatm) and CH4 measurements over MIS5 (80–123 kyr) , 2010 .

[4]  R. Röthlisberger,et al.  Atmospheric decadal variability from high-resolution Dome C ice core records of aerosol constituents beyond the Last Interglacial , 2010 .

[5]  J. Jouzel,et al.  Firn processes and δ15N: potential for a gas-phase climate proxy , 2010 .

[6]  By W. Dansga,et al.  Stable isotopes in precipitation , 2010 .

[7]  David E. Sugden,et al.  Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period , 2009 .

[8]  C. Hewitt,et al.  The Southern Westerlies during the last glacial maximum in PMIP2 simulations , 2009 .

[9]  C. Waelbroeck,et al.  Evidence for northward expansion of Antarctic Bottom Water mass in the Southern Ocean during the last glacial inception , 2009 .

[10]  Kevin W. Manning,et al.  Precipitation regime of Dronning Maud Land, Antarctica, derived from Antarctic Mesoscale Prediction System (AMPS) archive data , 2008 .

[11]  M. D. Angelis,et al.  The Southern Hemisphere at glacial terminations: insights from the Dome C ice core , 2008 .

[12]  A. Timmermann,et al.  Climate and marine carbon cycle response to changes in the strength of the southern hemispheric westerlies , 2008 .

[13]  Yohei Matsui,et al.  Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions , 2008 .

[14]  D. Bromwich,et al.  A Review of Antarctic Surface Snow Isotopic Composition : Observations, Atmospheric Circulation, and Isotopic Modeling , 2008 .

[15]  T. Stocker,et al.  High-resolution carbon dioxide concentration record 650,000–800,000 years before present , 2008, Nature.

[16]  T. Stocker,et al.  Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years , 2008, Nature.

[17]  M. Bigler,et al.  Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core , 2008, Nature.

[18]  D. Noone The influence of midlatitude and tropical overturning circulation on the isotopic composition of atmospheric water vapor and Antarctic precipitation , 2008 .

[19]  A. Landais,et al.  Record of δ18O and 17O‐excess in ice from Vostok Antarctica during the last 150,000 years , 2008 .

[20]  V. Masson‐Delmotte,et al.  Atmospheric influence on the deuterium excess signal in polar firn: implications for ice-core interpretation , 2008, Journal of Glaciology.

[21]  F. Pattyn,et al.  Historical droughts in Mediterranean regions during the last 500 years: a data/model approach , 2006 .

[22]  Kenji Kawamura,et al.  The EDC3 chronology for the EPICA Dome C ice core , 2007 .

[23]  R. Röthlisberger,et al.  Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica , 2007 .

[24]  A. Schilt,et al.  Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years , 2007, Science.

[25]  H. Oerter,et al.  EDML1: a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years , 2007 .

[26]  Timothy T. Barrows,et al.  Long-term sea surface temperature and climate change in the Australian–New Zealand region , 2007 .

[27]  Gavin A. Schmidt,et al.  Water isotope expressions of intrinsic and forced variability in a coupled ocean‐atmosphere model , 2007 .

[28]  van de Wal,et al.  The Isotopic Composition of Present-Day Antarctic Snow in a Lagrangian Atmospheric Simulation* , 2007 .

[29]  Daniel Schulte,et al.  Surface topography and ice flow in the vicinity of the EDML deep-drilling site, Antarctica , 2007 .

[30]  J. Tison,et al.  One-to-one coupling of glacial climate variability in Greenland and Antarctica. , 2006 .

[31]  Masa Kageyama,et al.  Past temperature reconstructions from deep ice cores: relevance for future climate change , 2006 .

[32]  E. Guilyardi,et al.  Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints , 2006 .

[33]  H. Fischer,et al.  30,000 Years of Cosmic Dust in Antarctic Ice , 2006, Science.

[34]  E. Guilyardi,et al.  Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints , 2006 .

[35]  C. Barbante,et al.  Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles , 2006, Nature.

[36]  D. Etheridge,et al.  Firn-air δ15N in modern polar sites and glacial–interglacial ice: a model-data mismatch during glacial periods in Antarctica? , 2006 .

[37]  V. Masson‐Delmotte,et al.  Modeling the isotopic composition of Antarctic snow using backward trajectories: simulation of snow pit records , 2006 .

[38]  Johannes Oerlemans,et al.  Modelled atmospheric temperatures and global sea levels over the past million years , 2005, Nature.

[39]  J. Jouzel,et al.  GRIP Deuterium Excess Reveals Rapid and Orbital-Scale Changes in Greenland Moisture Origin , 2005, Science.

[40]  R. Gersonde,et al.  Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—a circum-Antarctic view based on siliceous microfossil records , 2005 .

[41]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[42]  J Schwander,et al.  High-resolution record of Northern Hemisphere climate extending into the last interglacial period , 2004, Nature.

[43]  N. Yoshida,et al.  An observation‐based method for reconstructing ocean surface changes using a 340,000‐year deuterium excess record from the Dome Fuji ice core, Antarctica , 2004 .

[44]  Carlo Barbante,et al.  Eight glacial cycles from an Antarctic ice core , 2004, Nature.

[45]  I. Simmonds,et al.  Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation , 2004 .

[46]  J. Jouzel,et al.  Common millennial-scale variability of Antarctic and Southern Ocean temperatures during the past 5000 years reconstructed from the EPICA Dome C ice core , 2004 .

[47]  R. Röthlisberger,et al.  A late-glacial high-resolution site and source temperature record derived from the EPICA Dome C isotope records (East Antarctica) , 2004 .

[48]  H. Oerter,et al.  Stable isotope records from Dronning Maud Land: results from the EPICA ice cores. , 2004 .

[49]  Alessandro Capra,et al.  Space geodesy as a tool for measuring ice surface velocity in the Dome C region and along the ITASE traverse , 2004, Annals of Glaciology.

[50]  M. Broeke,et al.  Temporal and spatial variability of the surface mass balance in Dronning Maud Land, Antarctica, as derived from automatic weather stations , 2003, Journal of Glaciology.

[51]  R. Röthlisberger,et al.  An ice core indicator of Antarctic sea ice production? , 2003 .

[52]  J. Jouzel,et al.  Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores , 2003 .

[53]  J. Jouzel,et al.  Homogeneous climate variability across East Antarctica over the past three glacial cycles , 2003, Nature.

[54]  K. Cuffey,et al.  Space and time variation of δ18O and δD in Antarctic precipitation revisited , 2003 .

[55]  Jean Jouzel,et al.  New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess correction , 2002 .

[56]  R. Gersonde,et al.  The Southern Ocean surface between Marine Isotope Stages 6 and 5d: Shape and timing of climate changes , 2002 .

[57]  H. Oerter,et al.  Stable-isotope records from Dronning Maud Land, Antarctica , 2002, Annals of Glaciology.

[58]  M. P. Scheele,et al.  Air Parcel Trajectories and Snowfall Related to Five Deep Drilling Locations in Antarctica Based on the ERA-15 Dataset* , 2002 .

[59]  M. Heimann,et al.  Modeling interannual variability of water isotopes in Greenland and Antarctica , 2002 .

[60]  R. Röthlisberger,et al.  An Oceanic Cold Reversal During the Last Deglaciation , 2001, Science.

[61]  M. Broeke,et al.  Moisture source of precipitation in Western Dronning Maud Land, Antarctica , 2001, Antarctic Science.

[62]  J. Jouzel,et al.  Holocene hydrological cycle changes in the Southern Hemisphere documented in East Antarctic deuterium excess records , 2001 .

[63]  M. Heimann,et al.  Isotopic composition and origin of polar precipitation in present and glacial climate simulations , 2001 .

[64]  E. Mosley‐Thompson,et al.  Holocene Climate Variability in Antarctica Based on 11 Ice-Core Isotopic Records , 2000, Quaternary Research.

[65]  H. Meyer,et al.  Isotope Studies of Hydrogen and Oxygen in Ground Ice - Experiences with the Equilibration Technique , 2000, Isotopes in environmental and health studies.

[66]  J. Jouzel,et al.  Stable water isotopes in atmospheric general circulation models , 2000 .

[67]  R. Koster,et al.  The origin of Antarctic precipitation: a modelling approach , 2000 .

[68]  M. Heimann,et al.  Borehole versus isotope temperatures on Greenland: Seasonality does matter , 2000 .

[69]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[70]  J. Jouzel,et al.  Glacial–interglacial changes in ocean surface conditions in the Southern Hemisphere , 1999, Nature.

[71]  H. Oerter,et al.  Accumulation studies on Amundsenisen, Dronning Maud Land, Antarctica, by means of tritium, dielectric profiling and stable-isotope measurements: first results from the 1995–96 and 1996–97 field seasons , 1999, Annals of Glaciology.

[72]  M. Heimann,et al.  Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years , 1998 .

[73]  M. Claussen,et al.  The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate , 1996 .

[74]  P. Ciais,et al.  Deuterium and oxygen 18 in precipitation: Isotopic model, including mixed cloud processes , 1994 .

[75]  W. Peltier,et al.  Ice Age Paleotopography , 1994, Science.

[76]  D. Fisher A Zonally-Averaged Stable-Isotope Model Coupled to a Regional Variable-Elevation Stable-Isotope Model , 1990, Annals of Glaciology.

[77]  J. White,et al.  The origin of Arctic precipitation under present and glacial conditions , 1989 .

[78]  J. Jouzel,et al.  Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation , 1984 .

[79]  Jean Jouzel,et al.  Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum , 1982, Nature.

[80]  J. Jouzel,et al.  Global Climatic Interpretation of the Deuterium-Oxygen 18 Relationship , 1979 .