The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.

The development of more efficient electrical storage is a pressing requirement to meet future societal and environmental needs. This demand for more sustainable, efficient energy storage has provoked a renewed scientific and commercial interest in advanced capacitor designs in which the suite of experimental techniques and ideas that comprise nanotechnology are playing a critical role. Capacitors can be charged and discharged quickly and are one of the primary building blocks of many types of electrical circuit, from microprocessors to large-sale power supplies, but usually have relatively low energy storage capability when compared with batteries. The application of nanostructured materials with bespoke morphologies and properties to electrochemical supercapacitors is being intensively studied in order to provide enhanced energy density without comprising their inherent high power density and excellent cyclability. In particular, electrode materials that exploit physical adsorption or redox reactions of electrolyte ions are foreseen to bridge the performance disparity between batteries with high energy density and capacitors with high power density. In this review, we present some of the novel nanomaterial systems applied for electrochemical supercapacitors and show how material morphology, chemistry and physical properties are being tailored to provide enhanced electrochemical supercapacitor performance.

[1]  B. Conway,et al.  Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrodes , 1978 .

[2]  B. Conway,et al.  Surface and bulk processes at oxidized iridium electrodes—I. Monolayer stage and transition to reversible multilayer oxide film behaviour , 1983 .

[3]  Jeff Dahn,et al.  Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells , 1990 .

[4]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[5]  Doron Aurbach,et al.  The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition , 1994 .

[6]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[7]  Catia Arbizzani,et al.  Polymer-based redox supercapacitors: A comparative study , 1996 .

[8]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[9]  Richard E. Smalley,et al.  METALLIC RESISTIVITY IN CRYSTALLINE ROPES OF SINGLE-WALL CARBON NANOTUBES , 1997 .

[10]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[11]  J. Fricke,et al.  Carbon Aerogels as Electrode Material in Supercapacitors , 1997 .

[12]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[13]  S. Chou,et al.  Roller nanoimprint lithography , 1998 .

[14]  W. Sarjeant,et al.  Capacitors : Pulsed powder science and technology , 1998 .

[15]  Jeffrey W. Long,et al.  Voltammetric Characterization of Ruthenium Oxide-Based Aerogels and Other RuO2 Solids: The Nature of Capacitance in Nanostructured Materials , 1999 .

[16]  Deron A. Walters,et al.  Elastic strain of freely suspended single-wall carbon nanotube ropes , 1999 .

[17]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[18]  K. Méténier,et al.  Supercapacitor electrodes from multiwalled carbon nanotubes , 2000 .

[19]  Rao Tummala,et al.  Next generation integral passives: materials, processes, and integration of resistors and capacitors on PWB substrates , 2000 .

[20]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[21]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[22]  E. Takeuchi,et al.  Templated Synthesis of Carbon Materials from Zeolites (Y, Beta, and ZSM-5) and a Montmorillonite Clay (K10): Physical and Electrochemical Characterization , 2001 .

[23]  F. Béguin,et al.  Nanotubular materials for supercapacitors , 2001 .

[24]  Brett Graeme Ammundsen,et al.  Novel Lithium‐Ion Cathode Materials Based on Layered Manganese Oxides , 2001 .

[25]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[26]  D. Bélanger,et al.  Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for Electrochemical Supercapacitors , 2001 .

[27]  O. Chauvet,et al.  Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction , 2001 .

[28]  Rao Tummala,et al.  Colloidal processing of polymer ceramic nanocomposites for integral capacitors , 2001 .

[29]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[30]  Seok-Hyun Lee,et al.  Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor , 2002 .

[31]  Nae-Lih Wu,et al.  Nanocrystalline oxide supercapacitors , 2002 .

[32]  P. Soudan,et al.  Electrochemical Properties of Ruthenium-Based Nanocrystalline Materials as Electrodes for Supercapacitors , 2002 .

[33]  Guoqing Zhou,et al.  A study of activated carbon nanotubes as electrochemical super capacitors electrode materials , 2002 .

[34]  Mathieu Toupin,et al.  Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide , 2002 .

[35]  Zhaolin Liu,et al.  Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites , 2002 .

[36]  Bruce Dunn,et al.  Vanadium Oxide-Carbon Nanotube Composite Electrodes for Use in Secondary Lithium Batteries , 2002 .

[37]  K. Okabe,et al.  Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco™Buckytubes™) in propylene carbonate electrolytes , 2002 .

[38]  D. Cazorla-Amorós,et al.  Enhanced capacitance of carbon nanotubes through chemical activation , 2002 .

[39]  Alexis Laforgue,et al.  A Nonaqueous Asymmetric Hybrid Li4Ti5 O 12 / Poly(fluorophenylthiophene) Energy Storage Device , 2002 .

[40]  Karen E. Swider-Lyons,et al.  Local Atomic Structure and Conduction Mechanism of Nanocrystalline Hydrous RuO2 from X-ray Scattering , 2002 .

[41]  Seong Chu Lim,et al.  High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole , 2002 .

[42]  Yang Wang,et al.  Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes , 2002, Microscopy and Microanalysis.

[43]  John Ballato,et al.  Carbon Nanotube Doped Polyaniline , 2002 .

[44]  O Ok Park,et al.  Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors , 2003 .

[45]  N. Wu,et al.  Operating characteristics of aqueous magnetite electrochemical capacitors , 2003 .

[46]  Jochen Fricke,et al.  Carbon Aerogels for Electrochemical Double Layer Capacitors , 2003 .

[47]  W. Sugimoto,et al.  Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. , 2003, Angewandte Chemie.

[48]  P. Chiang,et al.  Column study of benzene adsorption onto activated carbon , 2003 .

[49]  Juan Bisquert,et al.  Cyclic Voltammetry Studies of Nanoporous Semiconductors. Capacitive and Reactive Properties of Nanocrystalline TiO2 Electrodes in Aqueous Electrolyte , 2003 .

[50]  Nae-Lih Wu,et al.  Electrochemical capacitor of magnetite in aqueous electrolytes , 2003 .

[51]  N. Miura,et al.  Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors , 2004 .

[52]  Chi-Chang Hu,et al.  Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon–RuOx electrodes for supercapacitors , 2004 .

[53]  Xiaohong Li,et al.  Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites , 2004 .

[54]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[55]  Norio Miura,et al.  Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors , 2004 .

[56]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[57]  Yingke Zhou,et al.  Preparation and Electrochemistry of SWNT/PANI Composite Films for Electrochemical Capacitors , 2004 .

[58]  L. Kavan,et al.  Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth , 2004 .

[59]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[60]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[61]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[62]  Ying-Sheng Huang,et al.  Electrochemical capacitors of RuO2 nanophase grown on LiNbO3(100) and sapphire(0001) substrates , 2005 .

[63]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[64]  D. Aurbach,et al.  Nanoparticles of tin confined in microporous carbon matrices as anode materials for Li batteries , 2005 .

[65]  P. Ajayan,et al.  Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. , 2005, The journal of physical chemistry. B.

[66]  N. Pan,et al.  Carbon nanotube thin films with ordered structures , 2005 .

[67]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[68]  I. Honma,et al.  Synthesis of MnO2 Nanoparticles Confined in Ordered Mesoporous Carbon Using a Sonochemical Method , 2005 .

[69]  Yoshiaki Ito,et al.  Drastic change of electric double layer capacitance by surface functionalization of carbon nanotubes , 2005 .

[70]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[71]  S. Han,et al.  Novel Synthesis and Electrochemical Characterization of Nano-sized Cellular Fe3O4 Thin Film , 2005 .

[72]  James M. Tour,et al.  Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes , 2005 .

[73]  Yongyao Xia,et al.  A Hybrid Electrochemical Supercapacitor Based on a 5 V Li-Ion Battery Cathode and Active Carbon , 2005 .

[74]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[75]  A. Zarbin,et al.  Hollow porous carbon microspheres obtained by the pyrolysis of TiO2/poly(furfuryl alcohol) composite precursors , 2006 .

[76]  M. Inagaki,et al.  Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors , 2006 .

[77]  Zhang Xiaogang,et al.  Amorphous Ru1- yCryO2 loaded on TiO2 nanotubes for electrochemical capacitors , 2006 .

[78]  Yang Cao,et al.  Advanced Dielectrics for Capacitors , 2006 .

[79]  G. Cao,et al.  Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides , 2006 .

[80]  A. Vadivel Murugan,et al.  Novel organic–inorganic poly (3,4-ethylenedioxythiophene) based nanohybrid materials for rechargeable lithium batteries and supercapacitors , 2006 .

[81]  P. Bruce,et al.  TiO2(B) Nanowires as an Improved Anode Material for Lithium‐Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte , 2006 .

[82]  Ying Wang,et al.  Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium‐Ion Intercalation , 2006 .

[83]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[84]  Liangbing Hu,et al.  A method of printing carbon nanotube thin films , 2006 .

[85]  B. Wei,et al.  Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials , 2006 .

[86]  D. Bélanger,et al.  Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors , 2006 .

[87]  S. Roth,et al.  Transparent and flexible carbon nanotube/polypyrrole and carbon nanotube/polyaniline pH sensors , 2006 .

[88]  Wei Xing,et al.  Superior electric double layer capacitors using ordered mesoporous carbons , 2006 .

[89]  Daihua Zhang,et al.  Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. , 2006 .

[90]  Igor Zhitomirsky,et al.  Cathodic electrosynthesis of iron oxide films for electrochemical supercapacitors , 2006 .

[91]  K. Gao,et al.  PE-g-MMA polymer electrolyte membrane for lithium polymer battery , 2006 .

[92]  Yongyao Xia,et al.  Electrochemical Capacitance Performance of Hybrid Supercapacitors Based on Ni ( OH ) 2 ∕ Carbon Nanotube Composites and Activated Carbon , 2006 .

[93]  Heli Jantunen,et al.  Inkjet printing of electrically conductive patterns of carbon nanotubes. , 2006, Small.

[94]  Qiang Wang,et al.  A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a TiO2–B Nanowire Anode , 2006 .

[95]  Jae Hyun Kim,et al.  Synthesis and Electrochemical Characterization of Vanadium Oxide on Carbon Nanotube Film Substrate for Pseudocapacitor Applications , 2006 .

[96]  Pierre-Louis Taberna,et al.  TiO2 (B)/activated carbon non-aqueous hybrid system for energy storage , 2006 .

[97]  Andreas Stein,et al.  Effects of Hierarchical Architecture on Electronic and Mechanical Properties of Nanocast Monolithic Porous Carbons and Carbon−Carbon Nanocomposites , 2006 .

[98]  K. Ho,et al.  Investigation on Capacitance Mechanisms of Fe3O4 Electrochemical Capacitors , 2006 .

[99]  Jun Chen,et al.  Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. , 2006, Inorganic chemistry.

[100]  Yong Wang,et al.  Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers , 2006 .

[101]  Haoshen Zhou,et al.  Nanomaterials for lithium ion batteries , 2006 .

[102]  Il-Hwan Kim,et al.  Pseudocapacitive Properties of Electrochemically Prepared Vanadium Oxide on Carbon Nanotube Film Substrate , 2006 .

[103]  Ning Pan,et al.  Supercapacitors using carbon nanotubes films by electrophoretic deposition , 2006 .

[104]  S. Stankovich,et al.  Preparation and characterization of graphene oxide paper , 2007, Nature.

[105]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[106]  M. Nakayama,et al.  Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor , 2007 .

[107]  Feng Jiao,et al.  Mesoporous Crystalline β‐MnO2—a Reversible Positive Electrode for Rechargeable Lithium Batteries , 2007 .

[108]  Wen-Ta Tsai,et al.  Effects of Iron Addition on Material Characteristics and Pseudo-Capacitive Behavior of Mn-Oxide Electrodes , 2007 .

[109]  Oh-Shim Joo,et al.  Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor , 2007 .

[110]  K. Novoselov,et al.  Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. , 2007, Nature materials.

[111]  Milind D. Arbatti,et al.  Ceramic–Polymer Composites with High Dielectric Constant , 2007 .

[112]  N. Wu,et al.  Electrochemical Capacitor of MnFe2O4 with Organic Li-Ion Electrolyte , 2007 .

[113]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[114]  Shuying An,et al.  Microwave-assisted synthesis and electrochemical capacitance of polyaniline/multi-wall carbon nanotubes composite , 2007 .

[115]  S. Stankovich,et al.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , 2007 .

[116]  Hu-lin Li,et al.  Synthesis and characterization of Co(OH)2/TiO2 nanotube composites as supercapacitor materials , 2007 .

[117]  Peter J. Hotchkiss,et al.  Phosphonic Acid‐Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength , 2007 .

[118]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[119]  Bin Dong,et al.  Preparation and electrochemical characterization of polyaniline/ multi-walled carbon nanotubes composites for supercapacitor , 2007 .

[120]  Yi Yin,et al.  Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/ Electroactive-Polymer Nanocomposites† , 2007 .

[121]  Pierre-Louis Taberna,et al.  Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor , 2007 .

[122]  M. Panhuis,et al.  Inkjet deposition and characterization of transparent conducting electroactive polyaniline composite films with a high carbon nanotube loading fraction , 2007 .

[123]  Ki-Hwan Oh,et al.  A novel concept of hybrid capacitor based on manganese oxide materials , 2007 .

[124]  A. Reddy,et al.  Nanocrystalline Metal Oxides Dispersed Multiwalled Carbon Nanotubes as Supercapacitor Electrodes , 2007 .

[125]  Youlong Xu,et al.  Capacitance properties of single wall carbon nanotube/polypyrrole composite films , 2007 .

[126]  Jyhfu Lee,et al.  Study on Pseudocapacitance Mechanism of Aqueous MnFe2O4 Supercapacitor , 2007 .

[127]  Fred Roozeboom,et al.  3‐D Integrated All‐Solid‐State Rechargeable Batteries , 2007 .

[128]  Yong-Mook Kang,et al.  Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. , 2007, Angewandte Chemie.

[129]  L. Mai,et al.  Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries , 2007 .

[130]  Weiyang Li,et al.  Electrochemical Lithium Intercalation/Deintercalation of Single-Crystalline V2O5 Nanowires , 2007 .

[131]  T. Kunitake,et al.  Synthesis and Li+ Intercalation/Extraction in Ultrathin V2O5 Layer and Freestanding V2O5/Pt/PVA Multilayer Films , 2007 .

[132]  Nanoscale Phenomena: Basic Science to Device Applications , 2008 .

[133]  V. Chaban,et al.  Uniform diffusion of acetonitrile inside carbon nanotubes favors supercapacitor performance. , 2008, Nano letters.

[134]  W. Nie,et al.  Synthesis of Ruthenium Dioxide Nanoparticles by a Two-Phase Route and Their Electrochemical Properties , 2008 .

[135]  S. Devaraj,et al.  Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties , 2008 .

[136]  M. Armand,et al.  Building better batteries , 2008, Nature.

[137]  Jiongxin Lu,et al.  Recent advances in high-k nanocomposite materials for embedded capacitor applications , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[138]  Feng Li,et al.  Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor , 2008 .

[139]  C. M. Li,et al.  Well-Aligned Cone-Shaped Nanostructure of Polypyrrole/RuO2 and Its Electrochemical Supercapacitor , 2008 .

[140]  Kaoru Dokko,et al.  Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors , 2008 .

[141]  Zhigang Chen,et al.  Synthesis and Electrochemical Property of Boron-Doped Mesoporous Carbon in Supercapacitor , 2008 .

[142]  Jianlin Shi,et al.  A Simple Template‐Free Strategy to Synthesize Nanoporous Manganese and Nickel Oxides with Narrow Pore Size Distribution, and Their Electrochemical Properties , 2008 .

[143]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[144]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[145]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[146]  C. Rao,et al.  A study of graphenes prepared by different methods: characterization, properties and solubilization , 2008 .

[147]  Jinhua Chen,et al.  High dispersion of γ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors , 2008 .

[148]  Yan Qiao,et al.  New Nanostructured TiO2 for Direct Electrochemistry and Glucose Sensor Applications , 2008 .

[149]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[150]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[151]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[152]  N. Perkas,et al.  Synthesis of Hexagonal-Shaped SnO2 Nanocrystals and SnO2@C Nanocomposites for Electrochemical Redox Supercapacitors , 2008 .

[153]  Feng Li,et al.  Frequency response characteristic of single-walled carbon nanotubes as supercapacitor electrode material , 2008 .

[154]  I. Zhitomirsky,et al.  Nickel foam-based manganese dioxide–carbon nanotube composite electrodes for electrochemical supercapacitors , 2008 .

[155]  Xiao‐Qing Yang,et al.  Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates , 2008 .

[156]  Yong Liu,et al.  Direct Growth of Flexible Carbon Nanotube Electrodes , 2008 .

[157]  X. Chen,et al.  Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties , 2008 .

[158]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[159]  Edward T. Samulski,et al.  Exfoliated Graphene Separated by Platinum Nanoparticles , 2008 .

[160]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[161]  Jian Lu,et al.  Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application , 2008 .

[162]  Jingwei Sun,et al.  Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution , 2008 .

[163]  Y. Wang,et al.  Flying plasmonic lens in the near field for high-speed nanolithography. , 2008, Nature nanotechnology.

[164]  Geoffrey M. Spinks,et al.  DNA‐Wrapped Single‐Walled Carbon Nanotube Hybrid Fibers for supercapacitors and Artificial Muscles , 2008 .

[165]  G. An,et al.  Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors , 2008, Nanotechnology.

[166]  Changhong Liu,et al.  Highly oriented carbon nanotube papers made of aligned carbon nanotubes , 2008, Nanotechnology.

[167]  R. Vasanthi,et al.  Olivine-type nanoparticle for hybrid supercapacitors , 2008 .

[168]  Jinhua Jiang,et al.  Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials , 2008 .

[169]  G. Wallace,et al.  Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper , 2008 .

[170]  V. Arunachalam,et al.  Harnessing Materials for Energy , 2008 .

[171]  Jeff Tollefson,et al.  Car industry: Charging up the future , 2008, Nature.

[172]  Jeng‐Kuei Chang,et al.  Annealed Mn–Fe binary oxides for supercapacitor applications , 2008 .

[173]  Zhennan Gu,et al.  Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. , 2008, Nano letters.

[174]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[175]  E. Yoo,et al.  Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. , 2008, Nano letters.

[176]  Shi Xue Dou,et al.  Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors , 2008 .

[177]  L. Dao,et al.  New Class of Carbon‐Nanotube Aerogel Electrodes for Electrochemical Power Sources , 2008 .

[178]  Wensheng Yang,et al.  Layer-by-layer self-assembly of manganese oxide nanosheets/polyethylenimine multilayer films as electrodes for supercapacitors , 2008 .

[179]  G. Wallace,et al.  Processable aqueous dispersions of graphene nanosheets. , 2008, Nature nanotechnology.

[180]  P. Bruce,et al.  The synthesis and lithium intercalation electrochemistry of VO2(B) ultra-thin nanowires , 2008 .

[181]  Yuping Wu,et al.  Tremella-like molybdenum dioxide consisting of nanosheets as an anode material for lithium ion battery , 2008 .

[182]  Characterization of MnO2 positive electrode for Fuel Cell/Battery (FCB) , 2008 .

[183]  G. Lu,et al.  3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. , 2008, Angewandte Chemie.

[184]  Jing Liang,et al.  Template-Directed Materials for Rechargeable Lithium-Ion Batteries† , 2008 .

[185]  L. Guo,et al.  High‐Speed Roll‐to‐Roll Nanoimprint Lithography on Flexible Plastic Substrates , 2008 .

[186]  Feng Li,et al.  Aligned Titania Nanotubes as an Intercalation Anode Material for Hybrid Electrochemical Energy Storage , 2008 .

[187]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[188]  Jun Chen,et al.  Combination of lightweight elements and nanostructured materials for batteries. , 2009, Accounts of chemical research.

[189]  G. Lu,et al.  Electrochemical behavior of carbon-nanotube/cobalt oxyhydroxide nanoflake multilayer films , 2009 .

[190]  Li Lu,et al.  Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties , 2009 .

[191]  Changhong Liu,et al.  Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties , 2009 .

[192]  G. Chen,et al.  Individual and Bipolarly Stacked Asymmetrical Aqueous Supercapacitors of CNTs / SnO2 and CNTs / MnO2 Nanocomposites , 2009 .

[193]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[194]  C. Black,et al.  Synthesis and characterization of V2O3 nanorods. , 2009, Physical chemistry chemical physics : PCCP.

[195]  Chao-Ming Huang,et al.  Pseudocapacitive Characteristics of Vanadium Oxide Deposits with a Three-Dimensional Porous Structure , 2009 .

[196]  E. Yoo,et al.  Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. , 2009, Nano letters.

[197]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[198]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[199]  A. Rinzler,et al.  Engineered macroporosity in single-wall carbon nanotube films. , 2009, Nano letters.

[200]  T. Gustafsson,et al.  Self-supported three-dimensional nanoelectrodes for microbattery applications. , 2009, Nano letters.

[201]  ZhengHua Deng,et al.  A high rate, high capacity and long life (LiMn2O4 + AC)/Li4Ti5O12 hybrid battery–supercapacitor , 2009 .

[202]  Yi Cui,et al.  Carbon nanofiber supercapacitors with large areal capacitances , 2009 .

[203]  Mark Z. Jacobson,et al.  Review of solutions to global warming, air pollution, and energy security , 2009 .

[204]  Xiao‐Qing Yang,et al.  Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes , 2009 .

[205]  Huafeng Yang,et al.  One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors , 2009, Nanotechnology.

[206]  D. Guyomard,et al.  Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials , 2009 .

[207]  Yongsheng Chen,et al.  SUPERCAPACITOR DEVICES BASED ON GRAPHENE MATERIALS , 2009 .

[208]  Lili Zhang,et al.  Manganese oxide―carbon composite as supercapacitor electrode materials , 2009 .

[209]  Feng Li,et al.  Electrochemical interfacial capacitance in multilayer graphene sheets: Dependence on number of stacking layers , 2009 .

[210]  Mingming Chen,et al.  Electrochemical Performances of Nanoparticle Fe3O4/Activated Carbon Supercapacitor Using KOH Electrolyte Solution , 2009 .

[211]  L. Zhi,et al.  Graphene-based electrode materials for rechargeable lithium batteries , 2009 .

[212]  John J Boland,et al.  Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. , 2009, ACS nano.

[213]  Y. Tong,et al.  MnO2 multilayer nanosheet clusters evolved from monolayer nanosheets and their predominant electrochemical properties , 2009 .

[214]  Xuyuan Chen,et al.  Fabrication and tests of a novel three dimensional micro supercapacitor , 2009 .

[215]  Jun Chen,et al.  Selective synthesis of manganese oxide nanostructures for electrocatalytic oxygen reduction. , 2009, ACS applied materials & interfaces.

[216]  Ki Chul Park,et al.  Capacitance response of double-walled carbon nanotubes depending on surface modification , 2009 .

[217]  Ryne P. Raffaelle,et al.  Carbon nanotubes for lithium ion batteries , 2009 .

[218]  Bin Wang,et al.  Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors , 2009 .

[219]  Xuyuan Chen,et al.  Preparation and characterization of polypyrrole films for three-dimensional micro supercapacitor , 2009 .

[220]  Fei Wei,et al.  Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage , 2009 .

[221]  Bei Wang,et al.  Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries , 2009 .

[222]  Mao-Sung Wu,et al.  Nanostructured Iron Oxide Films Prepared by Electrochemical Method for Electrochemical Capacitors , 2009 .

[223]  Gang Chen,et al.  Nanoscale design to enable the revolution in renewable energy , 2009, Energy & Environmental Science.

[224]  S. Radhakrishnan,et al.  Organically Soluble Bifunctional Polyaniline–Magnetite Composites for Sensing and Supercapacitor Applications , 2009 .

[225]  F. Favier,et al.  Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. , 2008, ACS applied materials & interfaces.

[226]  Jean-Marie Tarascon,et al.  Nanomaterials: Viruses electrify battery research. , 2009, Nature nanotechnology.

[227]  C. M. Torres,et al.  Reduced Surfactant Uptake in Three Dimensional Assemblies of VOx Nanotubes Improves Reversible Li+ Intercalation and Charge Capacity , 2009 .

[228]  P. He,et al.  Direct synthesis of mesoporous carbon nanowires in nanotubes using MnO(2) nanotubes as a template and their application in supercapacitors. , 2009, Chemical communications.

[229]  Patrick S. Grant,et al.  A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode , 2009 .

[230]  Colin Johnston,et al.  Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors , 2009, Nanotechnology.

[231]  J. Fauvarque,et al.  Electrochemical storage of polypyrrole–Fe2O3 nanocomposites in ionic liquids , 2009 .

[232]  U. Kolb,et al.  Synthesis of Microporous Carbon Nanofibers and Nanotubes from Conjugated Polymer Network and Evaluation in Electrochemical Capacitor , 2009 .

[233]  U. Kolb,et al.  A simple approach towards one-dimensional mesoporous carbon with superior electrochemical capacitive activity. , 2009, Chemical communications.

[234]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[235]  A. Manthiram,et al.  Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage , 2009 .

[236]  M. Antonietti,et al.  Block‐Copolymer‐Templated Synthesis of Electroactive RuO2‐Based Mesoporous Thin Films , 2009 .

[237]  Ritu Srivastava,et al.  Carbon nanotube-based organic light emitting diodes. , 2009, Nanoscale.

[238]  Haisheng Chen,et al.  Progress in electrical energy storage system: A critical review , 2009 .

[239]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[240]  R. Holze,et al.  V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution , 2009 .

[241]  Ji‐Guang Zhang,et al.  Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. , 2009, ACS nano.

[242]  Lili Zhang,et al.  Enhancement of Electrochemical Performance of Macroporous Carbon by Surface Coating of Polyaniline , 2010 .

[243]  Xin Zhao,et al.  Printable magnetite and pyrrole treated magnetite based electrodes for supercapacitors , 2010 .

[244]  Hao Jiang,et al.  Hydrothermal synthesis of novel Mn(3)O(4) nano-octahedrons with enhanced supercapacitors performances. , 2010, Nanoscale.

[245]  Wei Zhang,et al.  Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. , 2010, ACS nano.

[246]  Andrew Cruden,et al.  Energy storage in electrochemical capacitors: designing functional materials to improve performance , 2010 .

[247]  Ce Yao Foo,et al.  Designed smart system of the sandwiched and concentric architecture of RuO2/C/RuO2 for high performance in electrochemical energy storage. , 2010, Chemistry.

[248]  K. Amine,et al.  Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties† , 2010 .

[249]  F. Wei,et al.  Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors , 2010 .

[250]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[251]  Ping He,et al.  Nano active materials for lithium-ion batteries. , 2010, Nanoscale.

[252]  Xin Wang,et al.  A nanostructured graphene/polyaniline hybrid material for supercapacitors. , 2010, Nanoscale.

[253]  Peter H. L. Notten,et al.  3D negative electrode stacks for integrated all-solid-state lithium-ion microbatteries , 2010 .

[254]  H. Dai,et al.  Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. , 2010, Journal of the American Chemical Society.

[255]  Y. Shao-horn,et al.  Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. , 2010, ACS nano.

[256]  F. Wei,et al.  Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance , 2010 .

[257]  Da Chen,et al.  Graphene-based materials in electrochemistry. , 2010, Chemical Society reviews.

[258]  G. Graff,et al.  Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. , 2010, ACS nano.

[259]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[260]  Kian Ping Loh,et al.  High mobility, printable, and solution-processed graphene electronics. , 2010, Nano letters.

[261]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[262]  Xiaodong Wu,et al.  Graphene oxide--MnO2 nanocomposites for supercapacitors. , 2010, ACS nano.

[263]  Guangmin Zhou,et al.  Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. , 2010, ACS nano.

[264]  P. Ajayan,et al.  Multisegmented Au-MnO2/Carbon Nanotube Hybrid Coaxial Arrays for High-Power Supercapacitor Applications , 2010 .

[265]  Dingshan Yu,et al.  Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors , 2010 .

[266]  D. Su,et al.  Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. , 2010, ChemSusChem.

[267]  Thomas F. Marinis,et al.  Ultrahigh‐Energy‐Density Microbatteries Enabled by New Electrode Architecture and Micropackaging Design , 2010, Advanced materials.

[268]  Liangbing Hu,et al.  Carbon nanotube thin films: fabrication, properties, and applications. , 2010, Chemical reviews.

[269]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.