Energy selective scanning electron microscopy to reduce the effect of contamination layers on scanning electron microscope dopant mapping.

We demonstrate that energy selective scanning electron microscopy can lead to substantial dopant contrast and resolution improvements (compared to standard SEM) when the energy selection is carried out based on Monte Carlo modelled secondary electron spectra in combination with detector transfer modelling.

[1]  R. Shimizu,et al.  A Monte Carlo calculation of low-energy secondary electron emission from metals , 1974 .

[2]  H. Bethe,et al.  Theory of Atomic Collisions , 1951, Nature.

[3]  M. Dapor A Monte Carlo investigation of secondary electron emission from solid targets: Spherical symmetry versus momentum conservation within the classical binary collision model , 2009, 0903.4805.

[4]  The Effect of Surface States on Secondary Electron (SE) Dopant Contrast from Silicon p-n Junctions , 2007 .

[5]  R. F. Broom,et al.  Dopant profiling with the scanning electron microscope—A study of Si , 2002 .

[6]  A. Bleloch,et al.  High resolution secondary electron imaging and spectroscopy , 1989 .

[7]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[8]  T. Ohmi,et al.  Growth of native oxide on a silicon surface , 1990 .

[9]  H. Fitting,et al.  Monte Carlo simulation of secondary electron emission from the insulator SiO2 , 2002 .

[10]  S. Tear,et al.  Why is it possible to detect doped regions of semiconductors in low voltage SEM: a review and update , 2005 .

[11]  C. Humphreys,et al.  High resolution dopant profiling in the SEM, image widths and surface band-bending , 2008 .

[12]  W. Thowladda,et al.  Removal of Carbon Contamination on Silicon Wafer Surfaces by Microwave Oxygen Plasma , 2008 .

[13]  M. Dapor,et al.  The Effect of Oxide Overlayers on Secondary Electron Dopant Mapping , 2009, Microscopy and Microanalysis.

[14]  F. Yubero,et al.  Model for quantitative analysis of reflection-electron-energy-loss spectra. , 1992, Physical review. B, Condensed matter.

[15]  H. Seiler,et al.  Secondary electron emission in the scanning electron microscope , 1983 .

[16]  J. Rodenburg,et al.  A comprehensive Monte Carlo calculation of dopant contrast in secondary-electron imaging , 2008 .

[17]  R. H. Ritchie,et al.  Electron excitation and the optical potential in electron microscopy , 1977 .

[18]  M. El-Gomati,et al.  The role of oxygen in secondary electron contrast in doped semiconductors using low voltage scanning electron microscopy , 2008 .

[19]  James Pawley,et al.  Low voltage scanning electron microscopy , 1984, Journal of microscopy.

[20]  J. Venables Electron microscopy of surfaces , 1981 .

[21]  H. Kuroda,et al.  Thickness Measurement of Surface Layer by the Angular Dependent X-Ray Photoelectron Spectroscopy , 1980 .

[22]  H. Shinada,et al.  An energy analyzer for high-speed secondary electrons accelerated in inspection SEM imaging , 2002 .

[23]  C. Humphreys,et al.  Quantitative secondary electron energy filtering in a scanning electron microscope and its applications. , 2007, Ultramicroscopy.

[24]  C. Humphreys,et al.  Energy-filtered imaging in a field-emission scanning electron microscope for dopant mapping in semiconductors , 2002 .

[25]  Michael T. Postek,et al.  Electron Beam-Induced Sample Contamination in the SEM , 2005, Microscopy and Microanalysis.

[26]  Erik René Kieft,et al.  Refinement of Monte Carlo simulations of electron–specimen interaction in low-voltage SEM , 2008 .

[27]  C. Humphreys,et al.  High resolution quantitative two-dimensional dopant mapping using energy-filtered secondary electron imaging , 2006 .

[28]  N. F. Sir Mott,et al.  The theory of atomic collisions , 1933 .