Dissipative high phase-lag order methods
暂无分享,去创建一个
[1] M. M. Chawla,et al. An explicit sixth-order method with phase-lag of order eight for y ″= f ( t , y ) , 1987 .
[2] T. E. Simos,et al. A P-Stable Eighth-Order Method for the Numerical Integration of Periodic Initial-Value Problems , 1997 .
[3] M H Chawla,et al. A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .
[4] R. Liboff. Introductory quantum mechanics , 1980 .
[5] S. N. Papakostas,et al. High Phase-Lag-Order Runge-Kutta and Nyström Pairs , 1999, SIAM J. Sci. Comput..
[6] J. Lambert,et al. Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .
[7] J. M. Franco. An explicit hybrid method of Numerov type for second-order periodic initial-value problems , 1995 .
[8] A. Messiah. Quantum Mechanics , 1961 .
[9] T. E. Simos. Explicit two-step methods with minimal phase-lag for the numerical integration of special second-order initial-value problems and their application to the one-dimensional Schro¨dinger equation , 1992 .
[10] Theodore E. Simos,et al. Explicit high order methods for the numerical integration of periodic initial-value problems , 1998, Appl. Math. Comput..
[11] E. Fehlberg,et al. Classical eight- and lower-order Runge-Kutta-Nystroem formulas with stepsize control for special second-order differential equations , 1972 .
[12] C. Tsitouras. A parameter study of explicit Runge-Kutta pairs of orders 6(5) , 1998 .
[13] Ben P. Sommeijer,et al. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .
[14] Charalampos Tsitouras,et al. Cheap Error Estimation for Runge-Kutta Methods , 1999, SIAM J. Sci. Comput..