Dissipative high phase-lag order methods

New explicit hybrid Numerov type methods are presented in this paper. They share eighth algebraic order while their phase-lag order varies between 18 and 22. Their main characteristic is that they are dissipative so they possess an empty interval of periodicity. Numerical illustrations indicate that this choice was successful since the new methods outperforms the older ones which were scheduled to integrate effectively periodic problems.

[1]  M. M. Chawla,et al.  An explicit sixth-order method with phase-lag of order eight for y ″= f ( t , y ) , 1987 .

[2]  T. E. Simos,et al.  A P-Stable Eighth-Order Method for the Numerical Integration of Periodic Initial-Value Problems , 1997 .

[3]  M H Chawla,et al.  A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .

[4]  R. Liboff Introductory quantum mechanics , 1980 .

[5]  S. N. Papakostas,et al.  High Phase-Lag-Order Runge-Kutta and Nyström Pairs , 1999, SIAM J. Sci. Comput..

[6]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[7]  J. M. Franco An explicit hybrid method of Numerov type for second-order periodic initial-value problems , 1995 .

[8]  A. Messiah Quantum Mechanics , 1961 .

[9]  T. E. Simos Explicit two-step methods with minimal phase-lag for the numerical integration of special second-order initial-value problems and their application to the one-dimensional Schro¨dinger equation , 1992 .

[10]  Theodore E. Simos,et al.  Explicit high order methods for the numerical integration of periodic initial-value problems , 1998, Appl. Math. Comput..

[11]  E. Fehlberg,et al.  Classical eight- and lower-order Runge-Kutta-Nystroem formulas with stepsize control for special second-order differential equations , 1972 .

[12]  C. Tsitouras A parameter study of explicit Runge-Kutta pairs of orders 6(5) , 1998 .

[13]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[14]  Charalampos Tsitouras,et al.  Cheap Error Estimation for Runge-Kutta Methods , 1999, SIAM J. Sci. Comput..