The Breaking of Symmetry Leads to Chirality in Cucurbituril-Type Hosts

Cucurbituril-type hosts are highly symmetric, but there are means to break their symmetry. This review will present examples from three directions of induction of chirality in or by cucurbituril-type hosts: first, through the incorporation of stereogenic elements into host molecules; second, through complexation with achiral guests, which leads to axial supramolecular chirality and helical structures; third, through the formation of complexes with chiral guests in multi-molecule complexes and induction of supramolecular chirality. In addition, a list of chiral guests used in binding studies with cucurbiturils is collected. We would envision that encouraged by the outlined examples of outstanding applications of chiral cucurbituril-supramolecular systems, the boundaries of chiral applications of cucurbiturils would be widened.

[1]  V. Ramamurthy,et al.  Cucurbiturils as Reaction Containers for Photocycloaddition of Olefins , 2018 .

[2]  Ian W. Wyman,et al.  Host-guest complexations of local anaesthetics by cucurbit[7]uril in aqueous solution. , 2010, Organic & biomolecular chemistry.

[3]  A. Kaifer Portal Effects on the Stability of Cucurbituril Complexes , 2018 .

[4]  Y. Ko,et al.  Guest binding dynamics with cucurbit[7]uril in the presence of cations. , 2011, Journal of the American Chemical Society.

[5]  E. Masson,et al.  Kinetics Inside, Outside and Through Cucurbiturils , 2018 .

[6]  A. P. Davis,et al.  Biotin[6]uril Esters: Chloride-Selective Transmembrane Anion Carriers Employing C-H···Anion Interactions. , 2015, Journal of the American Chemical Society.

[7]  Ruibing Wang,et al.  Encapsulation of alkyldiammonium ions within two different cavities of twisted cucurbit[14]uril. , 2016, Chemical communications.

[8]  Yunqian Zhang,et al.  A novel strategy to assemble achiral ligands to chiral helical polyrotaxane structures. , 2011, Inorganic chemistry.

[9]  V. Fedin,et al.  Supramolecular Adducts of Cucurbit[7]uril and Amino Acids in the Gas Phase , 2016, Journal of The American Society for Mass Spectrometry.

[10]  Yu Zhao,et al.  Cucurbit[n]urils (n=7, 8) binding of camptothecin and the effects on solubility and reactivity of the anticancer drug , 2008 .

[11]  L. Isaacs,et al.  Cucurbit[7]uril containers for targeted delivery of oxaliplatin to cancer cells. , 2013, Angewandte Chemie.

[12]  Yunqian Zhang,et al.  Homochiral 1D-helical coordination polymers from achiral cucurbit[5]uril: hydroquinone-induced spontaneous resolution , 2012 .

[13]  Yunqian Zhang,et al.  Twisted cucurbit[14]uril. , 2013, Angewandte Chemie.

[14]  Eric Masson,et al.  Cucurbituril chemistry: a tale of supramolecular success , 2012 .

[15]  Robert D Johnson,et al.  Macromolecular Stereochemistry: The Out-of-Proportion Influence of Optically Active Comonomers on the Conformational Characteristics of Polyisocyanates. The Sergeants and Soldiers Experiment , 1989 .

[16]  J. F. Arteaga,et al.  Terpenes Show Nanomolar Affinity and Selective Binding with Cucurbit[8]uril , 2018 .

[17]  Z. Tao,et al.  Chirality from achiral components: N,N'-bis(4-dimethylaminobenzyl)dodecane-1,12-diammonium in cucurbit[8]uril. , 2010, Chemical communications.

[18]  Hugh Inkon Kim,et al.  Supramolecular Analysis of Monosaccharide Derivatives Using Cucurbit[7]uril and Electrospray Ionization Tandem Mass Spectrometry , 2018 .

[19]  Lyle Isaacs,et al.  Acyclic Cucurbit[n]uril-type Molecular Containers: Influence of Aromatic Walls on their Function as Solubilizing Excipients for Insoluble Drugs , 2014, Journal of medicinal chemistry.

[20]  Sandra Kaabel,et al.  Cucurbiturils: Synthesis, Structures, Formation Mechanisms, and Nomenclature , 2013 .

[21]  Lyle Isaacs,et al.  Acyclic cucurbit[n]uril-type molecular containers: influence of glycoluril oligomer length on their function as solubilizing agents. , 2015, Organic & biomolecular chemistry.

[22]  C. Hou,et al.  Cucurbituril As A Versatile Tool to Tune the Functions of Proteins , 2018 .

[23]  D. Fuentealba,et al.  Potential Applications of Cucurbit[n]urils Inclusion Complexes in Photodynamic Therapy , 2018 .

[24]  Da Ma,et al.  Acyclic cucurbit[n]uril conjugated dextran for drug encapsulation and bioimaging. , 2017, Chemical communications.

[25]  L. Vares,et al.  An NMR and MD modeling insight into nucleation of 1,2-alkanediols: selective crystallization of lipase-catalytically resolved enantiomers from the reaction mixtures. , 2013, The Journal of organic chemistry.

[26]  Oksana Danylyuk,et al.  Exploring cucurbit[6]uril–peptide interactions in the solid state: crystal structure of cucurbit[6]uril complexes with glycyl-containing dipeptides , 2017 .

[27]  Lyle Isaacs,et al.  Acyclic Cucurbit[n]uril‐Type Molecular Containers: Influence of Linker Length on Their Function as Solubilizing Agents , 2016, ChemMedChem.

[28]  O. Scherman,et al.  Supramolecular dimerisation of middle-chain Phe pentapeptides via CB[8] host-guest homoternary complex formation. , 2013, Chemical communications.

[29]  W. Nau,et al.  Noncovalent chirality sensing ensembles for the detection and reaction monitoring of amino acids, peptides, proteins, and aromatic drugs. , 2014, Angewandte Chemie.

[30]  Sandra Kaabel,et al.  Templating Effects in the Dynamic Chemistry of Cucurbiturils and Hemicucurbiturils , 2018 .

[31]  Eunsung Lee,et al.  New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8) , 2000 .

[32]  Mohammed A Meetani,et al.  Effect of cucurbit[n]urils on tropicamide and potential application in ocular drug delivery , 2011 .

[33]  J. Vittal,et al.  One-Dimensional Coordination Polymers: Complexity and Diversity in Structures, Properties, and Applications , 2011 .

[34]  Yingjie Zhang,et al.  Crystal structure analysis of twisted cucurbit [14]uril conformations , 2017 .

[35]  Michal Rouchal,et al.  Cucurbit[n]urils‐related Multitopic Supramolecular Components: Design, Properties, and Perspectives , 2018 .

[36]  Oren A Scherman,et al.  Benzobis(imidazolium)-cucurbit[8]uril complexes for binding and sensing aromatic compounds in aqueous solution. , 2010, Chemistry.

[37]  H. Cölfen,et al.  Comprehensive Supramolecular Chemistry II: Facet Control in Nanocrystal Growth , 2017 .

[38]  L. Lindoy,et al.  Hydroquinone-assisted assembly of coordination polymers from lanthanides and cucurbit[5]uril , 2012 .

[39]  Lyle Isaacs,et al.  The cucurbit[n]uril family: prime components for self-sorting systems. , 2005, Journal of the American Chemical Society.

[40]  P. Zavalij,et al.  Chiral recognition inside a chiral cucurbituril. , 2007, Angewandte Chemie.

[41]  Adam R. Urbach,et al.  Sequence-specific inhibition of a nonspecific protease. , 2013, Journal of the American Chemical Society.

[42]  Hong Wang,et al.  Binding and Selectivity of Essential Amino Acid Guests to the Inverted Cucurbit[7]uril Host , 2017, ACS omega.

[43]  R. Khurana,et al.  Stimuli‐responsive Supra‐biomolecular Nanoassemblies of Cucurbit[7]uril with Bovine Serum Albumin: Drug Delivery and Sensor Applications , 2018 .

[44]  E. Keinan,et al.  Aza-Bambusurils En Route to Anion Transporters. , 2016, Chemistry.

[45]  Mohammed A Meetani,et al.  Intermolecular interactions between cucurbit[7]uril and pilocarpine. , 2014, International journal of pharmaceutics.

[46]  Oren A Scherman,et al.  Cucurbituril-Based Molecular Recognition. , 2015, Chemical reviews.

[47]  P. Anzenbacher,et al.  "Turn-on" fluorescent sensor array for basic amino acids in water. , 2014, Chemical communications.

[48]  P. Zavalij,et al.  Metal-ion-induced folding and dimerization of a glycoluril decamer in water. , 2009, Organic letters.

[49]  D. Macartney Cucurbit[n]uril Host‐Guest Complexes of Acids, Photoacids, and Super Photoacids , 2018 .

[50]  P. Thuéry Supramolecular assemblies built from lanthanide ammoniocarboxylates and cucurbit[6]uril , 2012 .

[51]  Roymon Joseph,et al.  Cucurbit[8]uril recognition of rapidly interconverting diastereomers , 2014 .

[52]  Z. Tao,et al.  Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. , 2013, Chemical Society reviews.

[53]  V. Fedin,et al.  Kinetic trapping of the host-guest association intermediate and its transformation into a thermodynamic inclusion complex. , 2013, Chemical communications.

[54]  H. Ju,et al.  Supramolecular interaction of labetalol with cucurbit[7]uril for its sensitive fluorescence detection. , 2015, The Analyst.

[55]  Adam R. Urbach,et al.  Sequence-specific recognition and cooperative dimerization of N-terminal aromatic peptides in aqueous solution by a synthetic host. , 2006, Journal of the American Chemical Society.

[56]  L. Isaacs,et al.  Synthesis and Recognition Properties of Enantiomerically Pure Acyclic Cucurbit[n]uril-Type Molecular Containers. , 2015, Organic letters.

[57]  Tianyu Wang,et al.  Supramolecular Chirality in Self-Assembled Systems. , 2015, Chemical reviews.

[58]  L. Lindoy,et al.  Twisted Cucurbit[n]urils. , 2016, Organic letters.

[59]  Barry B Snushall,et al.  Controlling factors in the synthesis of cucurbituril and its homologues. , 2001, The Journal of organic chemistry.

[60]  David J. Williams,et al.  Decamethylcucurbit[5]uril† , 1992 .

[61]  Z. Tao,et al.  Self-assemblies based on the "outer-surface interactions" of cucurbit[n]urils: new opportunities for supramolecular architectures and materials. , 2014, Accounts of chemical research.

[62]  P. Jonkheijm,et al.  Stimuli‐Responsive Cucurbit[n]uril‐Mediated Host‐Guest Complexes on Surfaces , 2018 .

[63]  Kimoon Kim,et al.  Helical polyrotaxane: cucurbituril ‘beads’ threaded onto a helical one-dimensional coordination polymer , 1997 .

[64]  M. Pittelkow,et al.  Hemicucurbit[n]urils , 2017 .

[65]  T. Tamm,et al.  Template-controlled synthesis of chiral cyclohexylhemicucurbit[8]uril. , 2015, Chemical communications.

[66]  E. Rosta,et al.  Turning Cucurbit[8]uril into a Supramolecular Nanoreactor for Asymmetric Catalysis , 2015, Angewandte Chemie.

[67]  A. Kaifer,et al.  A new cucurbit[8]uril-based fluorescent receptor for indole derivatives. , 2007, Chemical communications.

[68]  P. Hansen,et al.  Aggregation of amphiphilic molecules in water. I. α‐phenylethylamine: 1H and 13C NMR study , 1991 .

[69]  Adam R. Urbach,et al.  Determining protease substrate selectivity and inhibition by label-free supramolecular tandem enzyme assays. , 2011, Journal of the American Chemical Society.

[70]  Yoshihisa Inoue,et al.  Chirality-sensing supramolecular systems. , 2008, Chemical reviews.

[71]  P. Zavalij,et al.  Supramolecular Sensors for Opiates and Their Metabolites. , 2017, Journal of the American Chemical Society.

[72]  V. Fedin,et al.  Solid-State Supramolecular Assemblies of Tryptophan and Tryptamine with Cucurbit[6]Uril , 2012 .

[73]  J. Švec,et al.  Bambus[6]uril. , 2010, Angewandte Chemie.

[74]  D. Bardelang,et al.  Nitroxide Radicals with Cucurbit[n]urils and Other Cavitands , 2018 .

[75]  W. Nau,et al.  Supramolecular tandem enzyme assays for multiparameter sensor arrays and enantiomeric excess determination of amino acids. , 2008, Chemistry.

[76]  J. F. Arteaga,et al.  Photocaged Competitor Guests: A General Approach Toward Light-Activated Cargo Release From Cucurbiturils. , 2017, Chemistry.

[77]  A. Ghanem,et al.  Cucurbituril: chiral applications. , 2014, Chirality.

[78]  Liping Cao,et al.  Absolute and relative binding affinity of cucurbit[7]uril towards a series of cationic guests , 2014 .

[79]  Yi-zhi Li,et al.  Iodine-assisted assembly of helical coordination polymers of cucurbituril and asymmetric copper(II) complexes. , 2005, Angewandte Chemie.

[80]  Krishna Gavvala,et al.  Modulation of photophysics and pKa shift of the anti-cancer drug camptothecin in the nanocavities of supramolecular hosts. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[81]  Young Ho Ko,et al.  Deciphering the specific high-affinity binding of cucurbit[7]uril to amino acids in water. , 2015, The journal of physical chemistry. B.

[82]  Adam R. Urbach,et al.  Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host. , 2005, Journal of the American Chemical Society.

[83]  L. Isaacs,et al.  Acyclic Cucurbit[n]uril-type Receptors: Preparation, Molecular Recognition Properties and Biological Applications. , 2018, Israel journal of chemistry.

[84]  T. Tamm,et al.  Computational and ion mobility MS study of (all-S)-cyclohexylhemicucurbit[6]uril structure and complexes. , 2014, Physical chemistry chemical physics : PCCP.

[85]  Yonghwi Kim,et al.  Point-of-Use Detection of Amphetamine-Type Stimulants with Host-Molecule-Functionalized Organic Transistors , 2017 .

[86]  Xiuping Chen,et al.  Influence of supramolecular encapsulation of camptothecin by cucurbit[7]uril: reduced toxicity and preserved anti-cancer activity , 2016 .

[87]  V. Šindelář,et al.  Bambusuril Anion Receptors , 2018 .

[88]  P. Sharma,et al.  Understanding behaviour of vitamin-C guest binding with the cucurbit[6]uril host , 2017 .

[89]  Rainer Herges,et al.  Topology in chemistry: designing Möbius molecules. , 2006, Chemical reviews.

[90]  Kristina Eriksen,et al.  Hemicucurbit[n]urils and Their Derivatives – Synthesis and Applications , 2018 .

[91]  Y. Miyahara,et al.  Remarkably facile ring-size control in macrocyclization: synthesis of hemicucurbit[6]uril and hemicucurbit[12]uril. , 2004, Angewandte Chemie.

[92]  Matthias Eikermann,et al.  Acyclic cucurbit[n]uril-type molecular containers bind neuromuscular blocking agents in vitro and reverse neuromuscular block in vivo. , 2012, Angewandte Chemie.

[93]  P. Anzenbacher,et al.  Multianalyte sensing of addictive over-the-counter (OTC) drugs. , 2013, Journal of the American Chemical Society.

[94]  Y. Ko,et al.  Chiral recognition in cucurbituril cavities. , 2006, Journal of the American Chemical Society.

[95]  Y. Ko,et al.  Cucurbit[7]uril: a high-affinity host for encapsulation of amino saccharides and supramolecular stabilization of their α-anomers in water. , 2014, Angewandte Chemie.

[96]  Frank Biedermann,et al.  Chemical Sensors Based on Cucurbit[n]uril Macrocycles , 2018 .

[97]  A. Madsen,et al.  Discovery of a cyclic 6 + 6 hexamer of D-biotin and formaldehyde , 2014 .

[98]  S. Sauer,et al.  Anion binding by biotin[6]uril in water. , 2015, Organic & biomolecular chemistry.

[99]  Y. Ko,et al.  Circular dichroism of intra- and intermolecular charge-transfer complexes. Enhancement of anisotropy factors by dimer formation and by confinement. , 2006, The Journal of organic chemistry.

[100]  Kimoon Kim,et al.  Transition metal ion directed supramolecular assembly of one- and two-dimensional polyrotaxanes incorporating cucurbituril. , 2002, Chemistry.

[101]  A. Koc,et al.  Supramolecular Assemblies of Cucurbiturils with Photoactive, π‐conjugated Chromophores , 2018 .

[102]  K. Rissanen,et al.  New chiral cyclohexylhemicucurbit[6]uril. , 2013, Organic letters.

[103]  D. Dearden,et al.  Recent Progress in Gas Phase Cucurbit[n]uril Chemistry , 2018 .