Universal Programmable Quantum Circuit Schemes to Emulate an Operator

Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantum complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U = e(-iHt) for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.

[1]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[2]  Barry C. Sanders,et al.  Quantum walks in higher dimensions , 2002 .

[3]  Wei Hai-Rui,et al.  Modified Khaneja–Glaser Decomposition and Realization of Three-Qubit Quantum Gate , 2008 .

[4]  Jun Zhang,et al.  Exact two-qubit universal quantum circuit. , 2003, Physical review letters.

[5]  J. Pittner,et al.  Quantum computing applied to calculations of molecular energies: CH2 benchmark. , 2010, The Journal of chemical physics.

[6]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[7]  G. Vidal,et al.  Universal quantum circuit for two-qubit transformations with three controlled-NOT gates , 2003, quant-ph/0307177.

[8]  Martin Gennis,et al.  Explorations in Quantum Computing , 2001, Künstliche Intell..

[9]  J. Whitfield,et al.  Simulating chemistry using quantum computers. , 2010, Annual review of physical chemistry.

[10]  V. Ralph Algazi,et al.  Unified Matrix Treatment of the Fast Walsh-Hadamard Transform , 1976, IEEE Transactions on Computers.

[11]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[12]  P. B. M. Sousa,et al.  Universal quantum circuit for N-qubit quantum gate: a programmable quantum gate , 2006, Quantum Inf. Comput..

[13]  Christophe Bobda,et al.  Introduction to reconfigurable computing - architectures, algorithms, and applications , 2010 .

[14]  J. P. Home,et al.  Realization of a programmable two-qubit quantum processor , 2009, 0908.3031.

[15]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[16]  R. Gillan New Editor-in-Chief for Journal of Physics A: Mathematical and Theoretical , 2014 .

[17]  I. Chuang,et al.  Programmable Quantum Gate Arrays , 1997, quant-ph/9703032.

[18]  Chi Zhang,et al.  On the efficiency of quantum algorithms for Hamiltonian simulation , 2010, Quantum Information Processing.

[19]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[20]  Sabre Kais,et al.  Group leaders optimization algorithm , 2010, ArXiv.

[21]  Alán Aspuru-Guzik,et al.  Quantum algorithm for obtaining the energy spectrum of molecular systems. , 2008, Physical chemistry chemical physics : PCCP.

[22]  Lucas Visscher,et al.  Relativistic quantum chemistry on quantum computers , 2011, 1111.3490.

[23]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[24]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[25]  Christophe Bobda,et al.  Introduction to Reconfigurable Computing , 2007 .

[26]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[27]  Byron Drury,et al.  Constructive quantum Shannon decomposition from Cartan involutions , 2008, 0806.4015.

[28]  J. Paz,et al.  Quantum gate arrays can be programmed to evaluate the expectation value of any operator , 2003, quant-ph/0306143.

[29]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[30]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[31]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[32]  William J. Munro,et al.  Ancilla-based quantum simulation , 2010, 1011.2984.

[33]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[34]  Farrokh Vatan,et al.  Realization of a General Three-Qubit Quantum Gate , 2004, quant-ph/0401178.

[35]  Mikko Möttönen,et al.  Quantum circuits for general multiqubit gates. , 2004, Physical review letters.

[36]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.