Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials

[1]  P. Wei,et al.  Efficient, Stable, Dopant‐Free Hole‐Transport Material with a Triphenylamine Core for CH3NH3PbI3 Perovskite Solar Cells , 2017 .

[2]  J. Hua,et al.  A comparative study of o,p-dimethoxyphenyl-based hole transport materials by altering π-linker units for highly efficient and stable perovskite solar cells , 2017 .

[3]  S. Zakeeruddin,et al.  Isomer‐Pure Bis‐PCBM‐Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability , 2017, Advanced materials.

[4]  Thomas M. Brown,et al.  Advances in hole transport materials engineering for stable and efficient perovskite solar cells , 2017 .

[5]  P. Liu,et al.  Design, synthesis and application of a π-conjugated, non-spiro molecular alternative as hole-transport material for highly efficient dye-sensitized solar cells and perovskite solar cells , 2017 .

[6]  Q. Meng,et al.  Stable Perovskite Solar Cells based on Hydrophobic Triphenylamine Hole-Transport Materials , 2017 .

[7]  S. Zakeeruddin,et al.  Dopant-free star-shaped hole-transport materials for efficient and stable perovskite solar cells , 2017 .

[8]  M. Nazeeruddin,et al.  A highly hindered bithiophene-functionalized dispiro-oxepine derivative as an efficient hole transporting material for perovskite solar cells , 2016 .

[9]  M. Grätzel,et al.  Hole-Transport Materials for Perovskite Solar Cells. , 2016, Angewandte Chemie.

[10]  S. Zakeeruddin,et al.  A novel one-step synthesized and dopant-free hole transport material for efficient and stable perovskite solar cells , 2016 .

[11]  Yin Xiao,et al.  Improvement in photovoltaic performance of perovskite solar cells by interface modification and co-sensitization with novel asymmetry 7-coumarinoxy-4-methyltetrasubstituted metallophthalocyanines , 2016 .

[12]  S. Zakeeruddin,et al.  Dopant-Free Donor (D)-π-D-π-D Conjugated Hole-Transport Materials for Efficient and Stable Perovskite Solar Cells. , 2016, ChemSusChem.

[13]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[14]  G. Boschloo,et al.  Facile synthesis of fluorene-based hole transport materials for highly efficient perovskite solar cells and solid-state dye-sensitized solar cells , 2016 .

[15]  S. Zakeeruddin,et al.  A Novel Dopant‐Free Triphenylamine Based Molecular “Butterfly” Hole‐Transport Material for Highly Efficient and Stable Perovskite Solar Cells , 2016 .

[16]  G. Boschloo,et al.  Constructive Effects of Alkyl Chains: A Strategy to Design Simple and Non‐Spiro Hole Transporting Materials for High‐Efficiency Mixed‐Ion Perovskite Solar Cells , 2016 .

[17]  V. Jankauskas,et al.  Highly Efficient Perovskite Solar Cells Employing an Easily Attainable Bifluorenylidene-Based Hole-Transporting Material. , 2016, Angewandte Chemie.

[18]  G. Boschloo,et al.  Strategy to Boost the Efficiency of Mixed-Ion Perovskite Solar Cells: Changing Geometry of the Hole Transporting Material. , 2016, ACS nano.

[19]  Abdullah M. Asiri,et al.  Donor–π–donor type hole transporting materials: marked π-bridge effects on optoelectronic properties, solid-state structure, and perovskite solar cell efficiency† †Electronic supplementary information (ESI) available. CCDC 1446682–1446684. For ESI and crystallographic data in CIF or other electronic , 2016, Chemical science.

[20]  Jae Hoon Yun,et al.  Effect of multi-armed triphenylamine-based hole transporting materials for high performance perovskite solar cells , 2016, Chemical science.

[21]  M. Nazeeruddin,et al.  Benzotrithiophene-Based Hole-Transporting Materials for 18.2 % Perovskite Solar Cells. , 2016, Angewandte Chemie.

[22]  M. Nazeeruddin,et al.  Branched methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials for high-performance perovskite solar cells , 2016 .

[23]  Hongtao Yu,et al.  Effects of heteroatom substitution in spiro-bifluorene hole transport materials† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc00973e , 2016, Chemical science.

[24]  Peng Gao,et al.  Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8 , 2016 .

[25]  Shirong Wang,et al.  Recent Progress of Perovskite Solar Cells , 2016 .

[26]  M. Grätzel,et al.  A low-cost spiro[fluorene-9,9′-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells , 2016 .

[27]  M. Grätzel,et al.  High-Efficiency Perovskite Solar Cells Employing a S,N-Heteropentacene-based D-A Hole-Transport Material. , 2016, ChemSusChem.

[28]  F. Hui,et al.  Dopant‐Free Spiro‐Triphenylamine/Fluorene as Hole‐Transporting Material for Perovskite Solar Cells with Enhanced Efficiency and Stability , 2016 .

[29]  P. Heremans,et al.  Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[30]  Peng Gao,et al.  A molecularly engineered hole-transporting material for efficient perovskite solar cells , 2016, Nature Energy.

[31]  Peng Gao,et al.  Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.

[32]  M. Grätzel,et al.  Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[33]  Y. Murata,et al.  Hole-Transporting Materials with a Two-Dimensionally Expanded π-System around an Azulene Core for Efficient Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[34]  Sungmin Park,et al.  A [2,2]paracyclophane triarylamine-based hole-transporting material for high performance perovskite solar cells , 2015 .

[35]  S. Zakeeruddin,et al.  A dopant-free spirobi[cyclopenta[2,1-b:3,4-b′]dithiophene] based hole-transport material for efficient perovskite solar cells , 2015 .

[36]  Po-Shen Shen,et al.  Novel spiro-based hole transporting materials for efficient perovskite solar cells. , 2015, Chemical communications.

[37]  Peng Gao,et al.  Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells , 2015 .

[38]  M. Grätzel,et al.  A Methoxydiphenylamine-Substituted Carbazole Twin Derivative: An Efficient Hole-Transporting Material for Perovskite Solar Cells. , 2015, Angewandte Chemie.

[39]  E. Alarousu,et al.  Facile Synthesis and High Performance of a New Carbazole-Based Hole-Transporting Material for Hybrid Perovskite Solar Cells , 2015 .

[40]  M. Grätzel,et al.  A simple spiro-type hole transporting material for efficient perovskite solar cells , 2015 .

[41]  T. Bein,et al.  Correction: A low cost azomethine-based hole transporting material for perovskite photovoltaics , 2015 .

[42]  Licheng Sun,et al.  Recent Progress on Hole‐Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells , 2015 .

[43]  J. N. Moorthy,et al.  Organic amorphous hole-transporting materials based on Tröger's Base: alternatives to NPB , 2015 .

[44]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[45]  Joo Yeon Kim,et al.  Save energy on OLED lighting by a simple yet powerful technique , 2015 .

[46]  G. Sharma,et al.  CH3NH3PbI3 Perovskite Sensitized Solar Cells Using a D-A Copolymer as Hole Transport Material , 2015 .

[47]  M. Grätzel,et al.  Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells. , 2014, ChemSusChem.

[48]  G. Boschloo,et al.  Carbazole‐Based Hole‐Transport Materials for Efficient Solid‐State Dye‐Sensitized Solar Cells and Perovskite Solar Cells , 2014, Advanced materials.

[49]  M. Grätzel,et al.  A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. , 2014, Angewandte Chemie.

[50]  Wei Lin Leong,et al.  A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells , 2014 .

[51]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[52]  G. Boschloo,et al.  Efficient solid state dye-sensitized solar cells based on an oligomer hole transport material and an organic dye , 2013 .

[53]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[54]  C. S. Karthikeyan,et al.  Key aspects of individual layers in solid-state dye-sensitized solar cells and novel concepts to improve their performance , 2008 .

[55]  Michael Grätzel,et al.  Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells , 2006 .