Co-Occurrence of Francisella, Spotted Fever Group Rickettsia, and Midichloria in Avian-Associated Hyalomma rufipes

The migratory behavior of wild birds contributes to the geographical spread of ticks and their microorganisms. In this study, we aimed to investigate the dispersal and co-occurrence of Francisella and spotted fever group Rickettsia (SFGR) in ticks infesting birds migrating northward in the African-Western Palaearctic region (AWPR). Birds were trapped with mist nests across the Mediterranean basin during the 2014 and 2015 spring migration. In total, 575 ticks were collected from 244 birds. We screened the ticks for the species Francisella tularensis, the genus Francisella, and SFGR by microfluidic real-time PCR. Confirmatory analyses and metagenomic sequencing were performed on tick samples that putatively tested positive for F. tularensis during initial screenings. Hyalomma rufipes was the most common tick species and had a high prevalence of Francisella, including co-occurrence of Francisella and SFGR. Metagenomic analysis of total DNA extracted from two H. rufipes confirmed the presence of Francisella, Rickettsia, and Midichloria. Average nucleotide identity and phylogenetic inference indicated the highest identity of the metagenome-assembled genomes to a Francisella-like endosymbiont (FLE), Rickettsia aeschlimannii, and Midichloria mitochondrii. The results of this study suggest that (i) FLE- and SFGR-containing ticks are dispersed by northbound migratory birds in the AWPR, (ii) H. rufipes likely is not involved in transmission of F. tularensis in the AWPR, and (iii) a dual endosymbiosis of FLEs and Midichloria may support some of the nutritional requirements of H. rufipes.

[1]  O. Duron,et al.  A dual endosymbiosis supports nutritional adaptation to hematophagy in the invasive tick Hyalomma marginatum , 2021, eLife.

[2]  Å. Lundkvist,et al.  Association between guilds of birds in the African-Western Palaearctic region and the tick species Hyalomma rufipes, one of the main vectors of Crimean-Congo hemorrhagic fever virus , 2021, One health.

[3]  Huiru Tang,et al.  Symbiont-regulated serotonin biosynthesis modulates tick feeding activity. , 2021, Cell host & microbe.

[4]  Mathias C. Walter,et al.  FlexTaxD: flexible modification of taxonomy databases for improved sequence classification , 2021, Bioinform..

[5]  M. Aktas,et al.  Complete mitochondrial genome characterization and phylogenetic analyses of the main vector of Crimean-Congo haemorrhagic fever virus: Hyalomma marginatum Koch, 1844. , 2021, Ticks and tick-borne diseases.

[6]  O. Duron,et al.  Evidence that microbes identified as tick-borne pathogens are nutritional endosymbionts , 2021, Cell.

[7]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[8]  David Sundell,et al.  Reorganized Genomic Taxonomy of Francisellaceae Enables Design of Robust Environmental PCR Assays for Detection of Francisella tularensis , 2021, Microorganisms.

[9]  O. Duron,et al.  Convergence of Nutritional Symbioses in Obligate Blood Feeders. , 2020, Trends in parasitology.

[10]  S. Nava Ticks of Europe and North Africa. A Guide to Species Identification. By Agustín Estrada-Peña, Andrei Daniel Mihalca and Trevor Petney (eds). Published by Springer International Publishing, 2017, 404 pp; ISBN 978-3-319-63759-4. , 2020, Medical and veterinary entomology.

[11]  Å. Lundkvist,et al.  A divergent Anaplasma phagocytophilum variant in an Ixodes tick from a migratory bird; Mediterranean basin , 2020, Infection ecology & epidemiology.

[12]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[13]  Jennifer Lu,et al.  Improved metagenomic analysis with Kraken 2 , 2019, Genome Biology.

[14]  F. Spina,et al.  Assessing the role of migratory birds in the introduction of ticks and tick-borne pathogens from African countries: An Italian experience. , 2019, Ticks and tick-borne diseases.

[15]  A. Sjödin,et al.  The Tick-Borne Diseases STING study: Real-time PCR analysis of three emerging tick-borne pathogens in ticks that have bitten humans in different regions of Sweden and the Aland islands, Finland , 2019, Infection ecology & epidemiology.

[16]  Renaud Lancelot,et al.  Tick-Bacteria Mutualism Depends on B Vitamin Synthesis Pathways , 2018, Current Biology.

[17]  C. Hepp,et al.  Range-wide genetic analysis of Dermacentor variabilis and its Francisella-like endosymbionts demonstrates phylogeographic concordance between both taxa , 2018, Parasites & vectors.

[18]  F. Spina,et al.  Patterns of Midichloria infection in avian-borne African ticks and their trans-Saharan migratory hosts , 2018, Parasites & Vectors.

[19]  L. Grubhoffer,et al.  Multiple Acquisitions of Pathogen-Derived Francisella Endosymbionts in Soft Ticks , 2018, Genome biology and evolution.

[20]  Yu Lin,et al.  Assembly of long, error-prone reads using repeat graphs , 2018, Nature Biotechnology.

[21]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[22]  G. Perlman,et al.  Francisella-Like Endosymbionts and Rickettsia Species in Local and Imported Hyalomma Ticks , 2017, Applied and Environmental Microbiology.

[23]  O. Duron,et al.  The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission , 2017, Front. Cell. Infect. Microbiol..

[24]  K. McCoy,et al.  Evolutionary changes in symbiont community structure in ticks , 2017, Molecular ecology.

[25]  R. Raghavan,et al.  A Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen , 2016, Scientific Reports.

[26]  J. Eiros,et al.  Molecular analysis of Crimean-Congo hemorrhagic fever virus and Rickettsia in Hyalomma marginatum ticks removed from patients (Spain) and birds (Spain and Morocco), 2009-2015. , 2016, Ticks and tick-borne diseases.

[27]  A. Ahantarig,et al.  Molecular detection of Rickettsia, Anaplasma, Coxiella and Francisella bacteria in ticks collected from Artiodactyla in Thailand. , 2016, Ticks and tick-borne diseases.

[28]  A. Gasbarrini,et al.  Human Rickettsia aeschlimannii infection: first case with acute hepatitis and review of the literature. , 2016, European review for medical and pharmacological sciences.

[29]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[30]  Vishwesh P. Mokashi,et al.  Reclassification of Wolbachia persica as Francisella persica comb. nov. and emended description of the family Francisellaceae. , 2016, International journal of systematic and evolutionary microbiology.

[31]  M. Vayssier-Taussat,et al.  Co-infection of Ticks: The Rule Rather Than the Exception , 2016, PLoS neglected tropical diseases.

[32]  L. Pritchard,et al.  Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens , 2016 .

[33]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[34]  P. Iadarola,et al.  Ixodes ricinus and Its Endosymbiont Midichloria mitochondrii: A Comparative Proteomic Analysis of Salivary Glands and Ovaries , 2015, PloS one.

[35]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[36]  L. Klasson,et al.  Distinctive Genome Reduction Rates Revealed by Genomic Analyses of Two Coxiella-Like Endosymbionts in Ticks , 2015, Genome biology and evolution.

[37]  N. Moran,et al.  Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole , 2015, Proceedings of the National Academy of Sciences.

[38]  Timothy P. Driscoll,et al.  A Coxiella-Like Endosymbiont Is a Potential Vitamin Source for the Lone Star Tick , 2015, Genome biology and evolution.

[39]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[40]  Getachew Abichu,et al.  Detection of Francisella-like endosymbiont in Hyalomma rufipes from Ethiopia. , 2014, Ticks and tick-borne diseases.

[41]  R. Bødker,et al.  High-throughput screening of tick-borne pathogens in Europe , 2014, Front. Cell. Infect. Microbiol..

[42]  E. Salaneck,et al.  Spotted fever Rickettsia species in Hyalomma and Ixodes ticks infesting migratory birds in the European Mediterranean area , 2014, Parasites & Vectors.

[43]  Anders Johansson,et al.  CanSNPer: a hierarchical genotype classifier of clonal pathogens , 2014, Bioinform..

[44]  L. Rinaldi,et al.  Molecular and serological evidence for the circulation of the tick symbiont Midichloria (Rickettsiales: Midichloriaceae) in different mammalian species , 2013, Parasites & Vectors.

[45]  D. Raoult,et al.  Update on Tick-Borne Rickettsioses around the World: a Geographic Approach , 2013, Clinical Microbiology Reviews.

[46]  S. Moutailler,et al.  Discriminating Francisella tularensis and Francisella-like endosymbionts in Dermacentor reticulatus ticks: evaluation of current molecular techniques. , 2013, Veterinary microbiology.

[47]  S. Epis,et al.  Localization of the bacterial symbiont Candidatus Midichloria mitochondrii within the hard tick Ixodes ricinus by whole-mount FISH staining. , 2013, Ticks and tick-borne diseases.

[48]  D. Raoult,et al.  The first molecular detection of Rickettsia aeschlimannii in the ticks of camels from southern Algeria. , 2012, Ticks and tick-borne diseases.

[49]  S. Epis,et al.  Humans parasitized by the hard tick Ixodes ricinus are seropositive to Midichloria mitochondrii: is Midichloria a novel pathogen, or just a marker of tick bite? , 2012, Pathogens and global health.

[50]  Sven Rahmann,et al.  Snakemake--a scalable bioinformatics workflow engine. , 2012, Bioinformatics.

[51]  M. Forsman,et al.  Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish , 2012, BMC Genomics.

[52]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[53]  J. Hübschen,et al.  Detection of New Francisella-Like Tick Endosymbionts in Hyalomma spp. and Rhipicephalus spp. (Acari: Ixodidae) from Bulgaria , 2011, Applied and Environmental Microbiology.

[54]  D. Daffonchio,et al.  Phylogenomic evidence for the presence of a flagellum and cbb(3) oxidase in the free-living mitochondrial ancestor. , 2011, Molecular biology and evolution.

[55]  M. Niedrig,et al.  Rickettsia aeschlimannii in Hyalomma marginatum Ticks, Germany , 2011, Emerging infectious diseases.

[56]  J. Piesman,et al.  Coinfections of Rickettsia slovaca and Rickettsia helvetica with Borrelia lusitaniae in ticks collected in a Safari Park, Portugal. , 2010, Ticks and tick-borne diseases.

[57]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[58]  U. Munderloh,et al.  Transovarial Transmission of Francisella-Like Endosymbionts and Anaplasma phagocytophilum Variants in Dermacentor albipictus (Acari: Ixodidae) , 2009, Journal of medical entomology.

[59]  E. Machado-Ferreira,et al.  Francisella-Like Endosymbiont DNA and Francisella tularensis Virulence-Related Genes in Brazilian Ticks (Acari: Ixodidae) , 2009, Journal of medical entomology.

[60]  K. Márialigeti,et al.  Detection of a novel Francisella in Dermacentor reticulatus: a need for careful evaluation of PCR-based identification of Francisella tularensis in Eurasian ticks. , 2009, Vector borne and zoonotic diseases.

[61]  J. Werren,et al.  Evolution and diversity of Rickettsia bacteria , 2009, BMC Biology.

[62]  I. Horak,et al.  The genus Hyalomma Koch, 1844: v. re-evaluation of the taxonomic rank of taxa comprising the H. (Euhyalomma) marginatum koch complex of species (Acari: Ixodidae) with redescription of all parasitic stages and notes on biology , 2008 .

[63]  S. Magnino,et al.  Midichloria mitochondrii is widespread in hard ticks (Ixodidae) and resides in the mitochondria of phylogenetically diverse species , 2008, Parasitology.

[64]  P. Hebert,et al.  bold: The Barcode of Life Data System (http://www.barcodinglife.org) , 2007, Molecular ecology notes.

[65]  A. Azad,et al.  Plasmids and Rickettsial Evolution: Insight from Rickettsia felis , 2007, PloS one.

[66]  D. Raoult,et al.  Spotted fever rickettsioses in southern and eastern Europe. , 2007, FEMS immunology and medical microbiology.

[67]  C. Bandi,et al.  'Candidatus Midichloria mitochondrii', an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. , 2006, International journal of systematic and evolutionary microbiology.

[68]  I. Kharitonenkov,et al.  Widespread distribution and high prevalence of an alpha-proteobacterial symbiont in the tick Ixodes ricinus. , 2006, Environmental microbiology.

[69]  Jonathan Pevsner,et al.  Basic Local Alignment Search Tool (BLAST) , 2005 .

[70]  G. Scoles Phylogenetic Analysis of the Francisella-like Endosymbionts of Dermacentor Ticks , 2004, Journal of medical entomology.

[71]  R. Pérez-Sánchez,et al.  Rickettsia aeschlimannii in Spain: Molecular Evidence in Hyalomma marginatum and Five Other Tick Species that Feed on Humans , 2003, Emerging infectious diseases.

[72]  D. Raoult,et al.  First Documented Human Rickettsia aeschlimannii Infection , 2002, Emerging infectious diseases.

[73]  Philip K. Russell,et al.  Tularemia as a biological weapon: medical and public health management. , 2001, JAMA.

[74]  J. E. Keirans,et al.  ANALYSIS OF THE SYSTEMATIC RELATIONSHIPS AMONG TICKS OF THE GENERA RHIPICEPHALUS AND BOOPHILUS (ACARI: IXODIDAE) BASED ON MITOCHONDRIAL 12S RIBOSOMAL DNA GENE SEQUENCES AND MORPHOLOGICAL CHARACTERS , 2001, The Journal of parasitology.

[75]  D. Fish,et al.  Francisella-like endosymbionts of ticks. , 2000, Journal of invertebrate pathology.

[76]  T. Schwan,et al.  Characterization of an endosymbiont infecting wood ticks, Dermacentor andersoni, as a member of the genus Francisella , 1997, Applied and environmental microbiology.

[77]  H. Noda,et al.  Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals , 1997, Applied and environmental microbiology.

[78]  D. Raoult,et al.  Rickettsia aeschlimannii sp. nov., a new spotted fever group rickettsia associated with Hyalomma marginatum ticks. , 1997, International journal of systematic bacteriology.

[79]  S. Bergström,et al.  Prevalence of Borrelia burgdorferi sensu lato-infected ticks on migrating birds , 1995 .

[80]  M. Carl,et al.  Diagnosis of acute typhus infection using the polymerase chain reaction. , 1990, The Journal of infectious diseases.

[81]  Mosè Manni,et al.  BUSCO: Assessing Genome Assembly and Annotation Completeness. , 2019, Methods in molecular biology.

[82]  M. Forsman,et al.  Influence of nutrient status and grazing pressure on the fate of Francisella tularensis in lake water. , 2009, FEMS microbiology ecology.

[83]  A. Estrada-Peña,et al.  Ticks of domestic animals in Africa: a guide to identification of species , 2003 .

[84]  A. Osterhaus,et al.  Characterization of phocid herpesvirus-1 and -2 as putative alpha- and gammaherpesviruses of North American and European pinnipeds. , 1996, The Journal of general virology.